Weak evaluation strategies in the λ -calculus

labandalambda

May 10, 2018

In this talk we will define three basic weak evaluation strategies: *call-by-name, call-by-value,* and *call-by-need,* by means of three formal presentations: *small-step evaluation, big-step evaluation* and an *abstract machine.* We will show how to prove that the three presentations are equivalent in the case of the call-by-name strategy. For the other two strategies similar techniques may be used (although the proofs are much more complex, especially in the call-by-need case).

Contents

1 Call-by-name

1.1 Small-step evaluation

Definition 1 (Small-step call-by-name evaluation). Terms and evaluation contexts are given by:

Terms	t	::=	$x \mid \lambda x.t \mid$	t t
Weak head contexts	Η	::=	$\Box \mid H t$	

The binary relation of small-step call-by-name evaluation is defined as follows:

 $\mathbb{H}\langle (\lambda x.t) \, s \rangle \to_{\mathsf{name}} \mathbb{H}\langle t \{ x := s \} \rangle$

Remark 2 (Determinism). If $t \rightarrow_{name} t_1$ and $t \rightarrow_{name} t_2$ then $t_1 = t_2$.

Exercise 3. Evaluate $(\lambda x.xx)(II)$ using small-step call-by-name evaluation.

1.2 Big-step evaluation

Definition 4 (Big-step call-by-name evaluation). Call-by-name environments and closures are given by the following abstract syntax:

Environments e ::= • | [$x \mapsto c$]:eClosures c ::= (t, e)

Environment concatenation is written $e_1 : e_2$. We also write dom e for the set of variables defined in e, and e(x) for the value of x in e.

The *big-step call-by-name evaluation* judgment $t \Downarrow^e c$, relates a source term t, an environment e mapping variables to closures, and the resulting closure c. Derivable judgments are inductively defined as follows:

$$\frac{e(x) = (t, e') \quad t \Downarrow^{e'} c}{x \Downarrow^{e} c} \quad \frac{1}{\lambda x.t \Downarrow^{e} (\lambda x.t, e)} \quad \frac{t \Downarrow^{e} (\lambda x.t', e') \quad t' \Downarrow^{[x \mapsto (s, e)]:e'} c}{t \land \psi^{e} c}$$

Remark 5. If $t \Downarrow^{e} c$ holds, then c is of the form $(\lambda x.s, e)$.

Exercise 6. Evaluate $(\lambda x.xx)(II)$ using big-step call-by-name evaluation.

Algorithm 7. A big-step call-by-name evaluator in Haskell:

1.3 Abstract machine

Definition 8 (Krivine Abstract Machine — KAM). Syntax:

States S ::= $\langle t | e | \pi \rangle$ Stacks π ::= $\bullet | c : \pi$

The transition relation is defined as $\mapsto \stackrel{\text{def}}{=} \mapsto_{\text{app}} \cup \mapsto_{\text{lam}} \cup \mapsto_{\text{var}}$, where:

$$\begin{array}{l} \langle t \, s \mid e \mid \pi \rangle & \mapsto_{\text{app}} & \langle t \mid e \mid (s, e) : \pi \rangle \\ \langle \lambda x.t \mid e \mid c : \pi \rangle & \mapsto_{\text{lam}} & \langle t \mid [x \mapsto c] : e \mid \pi \rangle \\ & \langle x \mid e \mid \pi \rangle & \mapsto_{\text{var}} & \langle t \mid e' \mid \pi \rangle & \text{if } e(x) = (t, e') \end{array}$$

Stack concatenation is denoted by π_1 : π_2 .

Remark 9 (Determinism). If $S \mapsto S_1$ and $S \mapsto S_2$ then $S_1 = S_2$.

Exercise 10. Evaluate $(\lambda x.xx)(II)$ in the KAM.

Algorithm 11. An implementation of the KAM in Haskell:

```
type Id = String
data State = S Term Stack Env
data Term = Var Id | Lam Id Term | App Term Term
type Env = [(Id, Closure)]
data Closure = C Term Env
```

Definition 12. The notion of being *closed* is defined inductively as follows:

- A term *t* is closed in an environment *e* if $fv(t) \subseteq \text{dom } e$. A term *t* is closed (*a secas*) if $fv(t) = \emptyset$.
- A closure (*t*, *e*) is closed if the term *t* is closed in *e* and, moreover, *e* is closed.
- An environment $[x_1 \mapsto c_1]: \ldots : [x_n \mapsto c_n]$ is closed if c_i is closed for all i = 1..n.
- A stack $c_1 : \ldots : c_n$ is closed if c_i is closed for all i = 1..n.
- A state $\langle t \mid e \mid \pi \rangle$ is closed if the closure (t, e) is closed and the stack π is closed.

Lemma 13 (KAM invariant). If $S \mapsto S'$ and S is closed then S' is closed. Remark that if t is a closed term, then $\langle t | \bullet | \bullet \rangle$ trivially fulfills the invariant.

Proof. By case analysis on the transitions.

1.4 Equivalence: big-step evaluation vs. abstract machine

Lemma 14 (Stack weakening). If $\langle t \mid e \mid \pi_1 \rangle \mapsto \langle t' \mid e' \mid \pi_1' \rangle$ then $\langle t \mid e \mid \pi_1 : \pi_2 \rangle \mapsto \langle t' \mid e' \mid \pi_1' : \pi_2 \rangle$.

Proof. By case analysis on the transitions of the KAM.

Proposition 15 (From big-step to the KAM). If $t \Downarrow^{e}(s, e')$ then $\langle t \mid e \mid \bullet \rangle \mapsto^{*} \langle s \mid e' \mid \bullet \rangle$.

Proof. By induction on the derivation that $t \Downarrow^e (s, e')$ using Lem. ??.

As an intermediate step to prove the converse of Prop. ??, we need the following generalization of the judgment $t \Downarrow^e c$:

Definition 16 (Generalized evaluation). Big-step call-by-name evaluation is generalized for an arbitrary stack π as follows:

$$\frac{t \stackrel{\psi^e}{=} c}{t \stackrel{\psi^e}{=} c} \quad \frac{t \stackrel{\psi^e}{=} (\lambda x.t', e') \quad t' \stackrel{\psi^{[\lambda \mapsto c_1].e}}{=} c_2}{t \stackrel{\psi^e}{=} c_2}$$

Lemma 17 (Properties of generalized evaluation). The judgment $t \downarrow_{\pi}^{e} c$ has the following properties:

- 1. If e(x) = (t, e') and $t \Downarrow_{\pi}^{e'} c$ then $x \Downarrow_{\pi}^{e} c$.
- 2. If $t \Downarrow^{e} (\lambda x.t', e')$ and $t' \Downarrow^{[x \mapsto (s,e)]:e'}_{\pi} c$ then $ts \Downarrow^{e}_{\pi} c$.

Proof. By induction on π .

Proposition 18 (From KAM to big-step). If $S = \langle t | e | \pi \rangle \mapsto^* \langle s | e' | \pi' \rangle = S'$ and S fulfills the KAM invariant and S' is in \mapsto -normal form, then π' is empty and $t \downarrow_{\pi}^e(s, e')$.

Proof. By induction on the number of transitions in $S \mapsto^* S'$ and case analysis on the shape of *t*, relying on Lem. **??**.

1.5 Equivalence: small-step evaluation vs. abstract machine

Definition 19 (KAM decoding).

$$\frac{\langle t \mid e \mid \pi \rangle}{\underbrace{e} \quad \stackrel{\text{def}}{=} \quad \frac{\pi}{\langle t^{\underline{e}} \rangle}} \\ \xrightarrow{e} \quad \stackrel{\text{def}}{=} \quad \square \\ \underbrace{\frac{c : \pi}{t^{\underline{e}}} \quad \stackrel{\text{def}}{=} \quad \frac{\pi}{\langle \Box c \rangle}}{t^{\underline{e}} \quad \stackrel{\text{def}}{=} \quad t} \\ t^{\underline{[x \mapsto c] : e}} \quad \stackrel{\text{def}}{=} \quad t\{x := c\}^{\underline{e}}$$

Lemma 20 (Properties of the decoding). The KAM decoding has the following properties:

- 1. $(\lambda x.t)^{\underline{e}} = \lambda x.t^{\underline{e}}$
- 2. $(t \ s)^{\underline{e}} = t^{\underline{e}} \ s^{\underline{e}}$
- 3. If e and e' are closed environments equal up to a permutation then $t^{\underline{e}} = t^{\underline{e'}}$.
- 4. If t is a closed term, then $t^{\underline{e}} = t$.

Proof. By induction on *e*.

Proposition 21 (KAM correctness). If $S \mapsto S'$ and the states fulfill the KAM invariant then $\underline{S} \rightarrow_{name}^* \underline{S'}$. Furthermore:

- If $S \mapsto_{app} S'$ then $\underline{S} = \underline{S'}$.
- If $S \mapsto_{\text{lam}} S'$ then $\underline{S} \rightarrow_{\text{name}} \underline{S'}$.
- If $S \mapsto_{\text{var}} S'$ then $\underline{S} = \underline{S'}$.

Proof. By case analysis on the transitions of the KAM, using Lem. ??.

Proposition 22 (KAM completeness). If $t \rightarrow_{name} t'$ and S is a state fulfilling the KAM invariant such that $\underline{S} = t$, then there exists a state S' such that $S \mapsto^* S'$ and $\underline{S'} = t'$.

Proof. Observe that the \mapsto_{var} transition strictly decreases the size of the environment, and the \mapsto_{app} transition preserves the size of the environment while strictly decreasing the size of the term. Hence $\mapsto_{app,var}$ is terminating.

Normalize S with respect to $\mapsto_{app,var}$ transitions, obtaining $S \mapsto^* S_1$. By correctness (Prop. ??), $t = S = S_1$. Note that the term of S_1 is an abstraction, so $S_1 = \langle \lambda x. s \mid \pi \mid e \rangle$. If the stack π is empty, then

 $t = S_1 = (\lambda x.s)^e$ is in \rightarrow_{name} -normal form contradicting the fact that $t \rightarrow_{name} t'$. So the stack is non-empty, $\pi = c: \pi'$ and we have:

$$S \mapsto_{\texttt{app,var}}^* S_1 = \langle \lambda x.s \mid c : \pi' \mid e \rangle \mapsto_{\texttt{lam}} \langle s \mid \pi' \mid [x \mapsto c] : e \rangle = S'$$

By correctness (Prop. ??), $t = \underline{S} = \underline{S_1} \rightarrow_{name} \underline{S'}$. So by determinism of both \mapsto and \rightarrow_{name} we conclude that $\underline{S'} = t'$, as required.

2 Call-by-value

2.1 Small-step evaluation

Definition 23 (Small-step call-by-value evaluation). Terms and evaluation contexts are given by:

Terms	t	::=	$x \mid \lambda x.t \mid t t$
Values	v	::=	$\lambda x.t$
Weak by-value contexts	V	::=	$\Box \mid V t \mid v V$

The binary relation of small-step call-by-value evaluation is defined as follows:

$$\mathbb{V}\langle (\lambda x.t) v \rangle \rightarrow_{\mathsf{value}} \mathbb{V}\langle t\{x := v\} \rangle$$

Exercise 24. Evaluate $(\lambda x.xx)(II)$ using small-step call-by-value evaluation.

2.2 Big-step evaluation

Definition 25 (Big-step call-by-value evaluation). Call-by-value environments and closures are given by the following abstract syntax:

Environments
$$e$$
 ::= • | [$x \mapsto c$]: e
Closures c ::= (v, e)

Derivability of the *big-step call-by-value evaluation* judgment $t \Downarrow^e c$ is defined as follows:

$$\frac{e(x) = c}{x \Downarrow^{e} c} \quad \frac{1}{\lambda x.t \Downarrow^{e} (\lambda x.t, e)} \quad \frac{t \Downarrow^{e} (\lambda x.t', e') \quad s \Downarrow^{e} c_{1} \quad t' \Downarrow^{\lfloor x \mapsto c \rfloor : e'} c_{2}}{t \, s \Downarrow^{e} c_{2}}$$

Exercise 26. Evaluate $(\lambda x.xx)(II)$ using big-step call-by-value evaluation.

2.3 Abstract machine

Definition 27 (CEK Machine). Syntax:

States
$$S ::= \langle t \mid e \mid \pi \rangle$$

Stacks $\pi ::= \bullet \mid \mathbf{A}(t, e) : \pi \mid \mathbf{F}(v, e) : \pi$

The transition relation is defined as follows:

$$\begin{array}{cccc} \langle t \ s \ | \ e \ | \ \pi \rangle & \mapsto & \langle t \ | \ e \ | \ \mathbf{F}(s, e) : \pi \rangle \\ \langle v \ | \ e \ | \ \mathbf{A}(t, e') : \pi \rangle & \mapsto & \langle t \ | \ e' \ | \ \mathbf{F}(v, e) : \pi \rangle \\ \langle v \ | \ e \ | \ \mathbf{F}(\lambda x. t, e') : \pi \rangle & \mapsto & \langle t \ | \ [x \mapsto (v, e)] : e' \ | \ \pi \rangle \\ \langle x \ | \ e \ | \ \pi \rangle & \mapsto & \langle v \ | \ e' \ | \ \pi \rangle & \text{if } e(x) = (v, e') \end{array}$$

Exercise 28. Evaluate $(\lambda x.xx)(II)$ in the CEK.

3 Call-by-need

3.1 Small-step evaluation

In contrast to call-by-name and call-by-value, small-step call-by-need evaluation cannot be expressed directly in the λ -calculus. To be able to express call-by-need as a small-step reduction strategy, we need to extend the set of terms with *explicit substitutions*.

Definition 29 (Small-step call-by-need evaluation). Terms and evaluation contexts are given by:

Terms	t	::=	$x \mid \lambda x.t \mid t t \mid t[x := t]$
Substitution contexts	L	::=	$\Box \mid L[x := t]$
Values	v	::=	$\lambda x.t$
Weak by-need contexts	Ν	::=	$\Box \mid \mathbb{N} t \mid \mathbb{N}[x := t] \mid \mathbb{N}\langle x \rangle [x := \mathbb{N}]$

Substitution contexts are lists of explicit substitutions, $L = \Box[x_1 := t_1] \dots [x_n := t_n]$. We write *t*L for $t[x_1 := t_1] \dots [x_n := t_n]$ rather than $L\langle t \rangle$. The binary relation of small-step call-by-need evaluation is defined as the union $\rightarrow_{need} = \rightarrow_{db} \cup \rightarrow_{lv} \cup \rightarrow_{gc}$ of the following three relations:

$\mathbb{N}\langle (\lambda x.t) \mathbb{L} s \rangle$	\rightarrow_{db}	$\mathbb{N}\langle t[x := s]\mathbb{L}\rangle$	distant beta
$\mathbb{N}_1 \langle \mathbb{N}_2 \langle x \rangle [x := v \mathbb{L}] \rangle$	\rightarrow_{lv}	$\mathbb{N}_1 \langle \mathbb{N}_2 \langle v \rangle [x := v] \mathbb{L} \rangle$	linear value substitution
$\mathbb{N}\langle t[x := s] \rangle$	\rightarrow_{gc}	$\mathbb{N}\langle t \rangle \text{if } x \notin fv(t)$	garbage collection

The three rules above are not deterministic. For example, in a term like (II)[x := t] the first and the third rule may apply. One can show that the system without the last rule is deterministic, and the garbage collection rule can be postponed:

Lemma 30 (Postponement of garbage-collection). If $t \rightarrow_{gc} \rightarrow_{db,lv} s$ then $t \rightarrow_{db,lv} \rightarrow_{gc}^* s$.

Proof. By case analysis on all the possibilities in which a \rightarrow_{gc} step is followed by a $\rightarrow_{db,1v}$ step. \square

Exercise 31. Evaluate $(\lambda x. xx)(II)$ using small-step call-by-need evaluation.

3.2 Big-step evaluation

Definition 32 (Big-step call-by-need evaluation). Let $\mathcal{L} = \{\ell_1, \ell_2, ...\}$ be a denumerable set of *memory locations*. Call-by-need environments and closures are given by the following abstract syntax:

Environments
$$e ::= \bullet | [x \mapsto t]:e$$

Memories $\mu ::= \bullet | [t \mapsto \mathbf{T}(t, e)]: \mu | [t \mapsto \mathbf{V}(v, e)]: \mu$
Closures $c ::= (v, e)$

Derivability of the *big-step call-by-need evaluation* judgment $t @ \mu_1 \Downarrow^e c @ \mu_2$ is defined as follows:

$$\frac{\ell = e(x) \qquad \mu(\ell) = \mathbf{V}(v, e')}{x @ \mu \Downarrow^{e}(v, e') @ \mu} \qquad \overline{\lambda x.t @ \mu \Downarrow^{e}(\lambda x.t, e) @ \mu}$$

$$\frac{\ell = e(x) \qquad \mu_{1}(\ell) = \mathbf{T}(t, e') \qquad t @ \mu_{1} \Downarrow^{e'}(v, e'') @ \mu_{2}}{x @ \mu_{1} \Downarrow^{e}(v, e'') @ [\ell \mapsto \mathbf{V}(v, e'')] : \mu_{2}}$$

$$\frac{t @ \mu_{1} \Downarrow^{e}(\lambda x.t', e') @ \mu_{2} \qquad \ell \text{ fresh } t' @ [\ell \mapsto \mathbf{T}(s, e)] : \mu_{2} \Downarrow^{[x \mapsto \ell]:e'} c @ \mu_{3}}{ts @ \mu_{1} \Downarrow^{e} c @ \mu_{3}}$$

Exercise 33. Evaluate $(\lambda x.xx)(II)$ using big-step call-by-need evaluation.

3.3 Abstract machine

The following machine is based on Sestoft's:

Definition 34 (Milner by-need Asbtract Machine). Syntax:

States	\boldsymbol{S}	::=	$\langle t \mid \pi \mid D \mid E \rangle$
Stacks	π	::=	• $ t : \pi$
Dumps	D	::=	(x,π) : D
Global environments	E	::=	• $ [x \mapsto t] : E$

The transition relation is defined as follows:

$$\begin{array}{cccc} \langle ts \mid \pi \mid D \mid E \rangle & \mapsto & \langle t \mid s : \pi \mid D \mid E \rangle \\ \langle \lambda x.t \mid s : \pi \mid D \mid E \rangle & \mapsto & \langle t \mid \pi \mid D \mid [x \mapsto s] : E \rangle \\ \langle x \mid \pi \mid D \mid E \rangle & \mapsto & \langle t \mid \bullet \mid (x, \pi) : D \mid E \rangle \\ \langle v \mid \bullet \mid (x, \pi) : D \mid E \rangle & \mapsto & \langle v^{\alpha} \mid \pi \mid D \mid [x \mapsto v] : E \rangle \end{array} if E(x) = t$$

Exercise 35. Evaluate $(\lambda x.xx)(II)$ in Milner by-need Abstract Machine.