Weak evaluation strategies in the A-calculus

labandalambda

May 10, 2018

In this talk we will define three basic weak evaluation strategies: call-by-name, call-by-value, and call-by-
need, by means of three formal presentations: small-step evaluation, big-step evaluation and an abstract ma-
chine. We will show how to prove that the three presentations are equivalent in the case of the call-by-name
strategy. For the other two strategies similar techniques may be used (although the proofs are much more
complex, especially in the call-by-need case).

Contents

1 Call-by-name

1.1 Small-step evaluation

Definition 1 (Small-step call-by-name evaluation). Terms and evaluation contexts are given by:

Terms t x| Ax.t|tt
Weak head contexts H ::= [J|Ht

The binary relation of small-step call-by-name evaluation is defined as follows:

H((Ax.t) s) — H{t{x :=s})

name

Remark 2 (Determinism). Ift -,] andt =, 1, thent; =t,.

Exercise 3. Evaluate (Ax.xx)(IT) using small-step call-by-name evaluation.

1.2 Big-step evaluation

Definition 4 (Big-step call-by-name evaluation). Call-by-name environments and closures are given by the
following abstract syntax:

Environments e o|[x+clie
Closures c := (te)

Environment concatenation is written e, : e,. We also write dom e for the set of variables defined in ¢, and
e(x) for the value of x in e.

The big-step call-by-name evaluation judgment ¢ ¢ ¢, relates a source term 7, an environment e mapping
variables to closures, and the resulting closure c. Derivable judgments are inductively defined as follows:

e(x)=(t,e) 14 ¢ 14 (axd,el) 1 Yool ¢
e
x ¢ c Ax.t ¢ (Ax.t,e) ts ¢ c

Remarks. 1ft ¢ c holds, then c is of the form (1x.s, e).

Exercise 6. Evaluate (Ax.xx)(IT) using big-step call-by-name evaluation.

Algorithm 7. A big-step call-by-name evaluator in Haskell:

type Id = String
data Term = Var Id | Lam Id Term | App Term Term
type Env = [(Id, Closure)]

data Closure = C Term Env

eval :: Term -> Env -> Closure
eval (Var x) e = let Just (C t e') = lookup x e in
eval t e'

eval (Lam x t) e = C (Lam x t) e
eval (App t s) e = let C (Lam x t') e' = eval t e in
eval t' ((x, Cse) : e")

1.3 Abstract machine

Definition 8 (Krivine Abstract Machine — KAM). Syntax:

States .S (t|e]|n)
Stacks & ::= e|c:ixm

.. . . dif .
The transition relation is defined as »= ;) U =1, U ., where:

(tslelm) ap (tlel(s,e):m)
(Axtle|cim)y i (t]lxclie]|)
<x | e I 77'-> P var <t | e | ﬂ) 1fe(x) =, e,)

Stack concatenation is denoted by =z : 7,.

Remark 9 (Determinism). If S — S; and S — S, then S| = S,.
Exercise 10. Evaluate (Ax.xx)(I 1) in the KAM.

Algorithm 11. An implementation of the KAM in Haskell:

type Id = String

data State S Term Stack Env

data Term Var Id | Lam Id Term | App Term Term
type Env = [(Id, Closure)]

data Closure C Term Env

type Stack = [Closure]

execl :: State -> Maybe State

execl (S (App t s) p e) = Just (St (Cse: p) e

execl (S (Lam x t) (c : p) e) = Just (St p ((x,) : e))

execl (S (Var x) p e) let Just (C t e') = lookup x e
in Just (St p e')

Nothing

execl _

exec :: State -> State

exec s = case execl s of
Nothing -> s
Just s' -> exec s'

Definition 12. The notion of being closed is defined inductively as follows:
« Atermtis closed in an environment e if fv(f) C dome. A term ¢ is closed (a secas) if fv(¢) = @.
« Aclosure (¢, e) is closed if the term ¢ is closed in e and, moreover, e is closed.
« Anenvironment [x; — ¢;]: ... :[x, — ¢,]is closed if ¢; is closed for alli = 1..n.
« Astackey: ... i¢,isclosed if ¢; is closed for alli = 1..n.
« Astate (t | e |) is closed if the closure (7, e) is closed and the stack = is closed.

Lemma 13 (KAM invariant). If S — S’ and S is closed then S’ is closed. Remark that if t is a closed term, then
(t | o | o) trivially fulfills the invariant.

Proof. By case analysis on the transitions. [4 O

1.4 Equivalence: big-step evaluation vs. abstract machine

Lemma 14 (Stack weakening). If(t | e | 7)) = (' | &' | z]) then(t | e | 7 :my) = (t' | &' | 7] i 7).

Proof. By case analysis on the transitions of the KAM. [4 O
Proposition 15 (From big-step to the KAM). Ift ¢ (s,e’) then(t | e| o) =* (s | e’ | o).

Proof. By induction on the derivation thatz ¢ (s, e’) using Lem. 2?. [4 O

As an intermediate step to prove the converse of Prop. ??, we need the following generalization of the
judgment ¢ ¢ ¢:

Definition 16 (Generalized evaluation). Big-step call-by-name evaluation is generalized for an arbitrary
stack 7 as follows: »
tU¢c ¢ (axt, ey %E,XHC']'e ¢

e e
Z»U«”C tucliﬂ)

Lemma 17 (Properties of generalized evaluation). The judgmentt {J¢ c has the following properties:

L Ife(x) = (t,¢')andt J}f: cthen x J° c.

2. Ift ¢ (Ax.t', e’y and ¥ {LEEX“"”W' cthents Y c.
Proof. By induction on z. [4 O

Proposition 18 (From KAM to big-step). IfS = (t | e | z) »* (s | & | #') = S and S fulfills the KAM
invariant and S’ is in +-normal form, then z’ is empty and t J¢ (s, €’).

Proof. By induction on the number of transitions in S —* S’ and case analysis on the shape of 7, relying
onLem. ??. [4 O

1.5 Equivalence: small-step evaluation vs. abstract machine

Definition 19 (KAM decoding).
(teln) & z(t)

. 80
ciz = x({e)
r &g

t[x»—w]:e def t{x::g}f

Lemma 20 (Properties of the decoding). The KAM decoding has the following properties:
I (Ax.H)¢ = Ax.t¢
2. (ts)t =158
3. Ifeand ¢’ are closed environments equal up to a permutation then 1¢ = 1<.
4. Iftisaclosed term, then 1 = t.
Proof. Byinduction on e. [4 O

Proposition 21 (KAM correctness). If S +— S’ and the states fulfill the KAM invariant then S -, S’. Fur-
thermore:

c IfS o, S'then S = 5.
< IfS =1 s’ then§ “name s’

c IfS S'then S = 8.
Proof. By case analysis on the transitions of the KAM, using Lem. ??. [4 O

Proposition 22 (KAM completeness). Ift — .. !’ and S is a state fulfilling the KAM invariant such that S =1,
then there exists a state S’ such that S —* S’ and S’ =1'.
Proof. Observe that the . transition strictly decreases the size of the environment, and the —, tran-
sition preserves the size of the environment while strictly decreasing the size of the term. Hence —
is terminating.

Normalize S with respect to =, ., transitions, obtaining .§ —* §,. By correctness (Prop. 2?), 1 =
S = §|. Note that the term of S| is an abstraction, so S| = (Ax.s | = | e). If the stack z is empty, then

app,var

t =8| = (Ax.s)¢isin - ,.-normal form contradicting the fact that t — . #’. So the stack is non-empty,
n = c¢:n’ and we have:

St ey 1= (dxs [eia [&) oy (s | 2 | [x = clie) = S
By correctness (Prop. ?2),t = .S = S| = pame S'- So by determinism of both ~ and — . we conclude that
S’ =1, as required. O

2 Call-by-value

2.1 Small-step evaluation

Definition 23 (Small-step call-by-value evaluation). Terms and evaluation contexts are given by:

Terms t = x| Ax.t|tt
Values voli= Axt
Weak by-value contexts V. ::= [J|Vt|oV

The binary relation of small-step call-by-value evaluation is defined as follows:
V{((Ax.1) 0) =406 V(t{x :=0})

Exercise 24. Evaluate (Ax.xx)({ I) using small-step call-by-value evaluation.

2.2 Big-step evaluation

Definition 25 (Big-step call-by-value evaluation). Call-by-value environments and closures are given by the
following abstract syntax:

Environments e o|[x+clie

Closures ¢ = (ve)

Derivability of the big-step call-by-value evaluation judgment ¢ J¢ ¢ is defined as follows:

() = - t4° (ﬂx.l,,é‘,) s ¢ ¢ ¢ l}[x»—wjle/ ¢
x¢c Axtl(xte) ts°c,

Exercise 26. Evaluate (Ax.xx)(I I) using big-step call-by-value evaluation.

2.3 Abstract machine

Definition 27 (CEK Machine). Syntax:

States S ::= (t]e|nx)
Stacks 7 ::= e|A(t,e):n |F(v,e):x
The transition relation is defined as follows:
(tsle|lm)y — (t]e|F(s,e):x)
(v]e|A@t,e"):n) — (t|e |F(v,e):x)
(v]e|FAx.t,e'):x) > (t]|[x+ (v,e)]:e |)
(xlelm) = (vle|x) if e(x) = (v, €’)

Exercise 28. Evaluate (Ax.xx)(I[) in the CEK.

3 Call-by-need

3.1 Small-step evaluation

In contrast to call-by-name and call-by-value, small-step call-by-need evaluation cannot be expressed di-
rectly in the A-calculus. To be able to express call-by-need as a small-step reduction strategy, we need to
extend the set of terms with explicit substitutions.

Definition 29 (Small-step call-by-need evaluation). Terms and evaluation contexts are given by:

Terms t = x| Axt|tt|t[x :=t]
Substitution contexts L = O|Lx:=1]
Values v o= Axt

Weak by-need contexts N

O N7 Nx :=] | N(x)[x :=1N]

Substitution contexts are lists of explicit substitutions, L = [J[x; := t;]...[x, := t,]. We write ¢L for
tlx; := t,]...[x, := t,] rather than L{f). The binary relation of small-step call-by-need evaluation is
defined as the union —eq= =4 U =1, U = of the following three relations:

N((Ax.H)Ls) —g4 N([x := s]L) distant beta
N (Ny(x)[x :=0L]) —;, N (Ny(v)[x :=v]L) linear value substitution
N(t[x :=s]) —gc N(r) ifx & fv(r) garbage collection

The three rules above are not deterministic. For example, in a term like (I I)[x := ¢] the first and the
third rule may apply. One can show that the system without the last rule is deterministic, and the garbage
collection rule can be postponed:

Lemma 30 (Postponement of garbage-collection). Ift =, —ay1y Sthent —ab1v e S
Proof. By case analysis on all the possibilities in which a — step is followed by a -, ,, step. [4 O

Exercise 31. Evaluate (Ax.xx)(II) using small-step call-by-need evaluation.

3.2 Big-step evaluation

Definition 32 (Big-step call-by-need evaluation). Let £L = {Z,,¢>,,...} be a denumerable set of memory
locations. Call-by-need environments and closures are given by the following abstract syntax:

Environments e ::= e]|[x> £]:e
Memories u | [>T, e)l:u| €~ V(,e)l:u
Closures ¢ = (ve)

Derivability of the big-step call-by-need evaluation judgment t @ y; ° ¢ @ p, is defined as follows:

£=e(x) u)=V,e)
X@ﬂ‘U’e (U,e/)@[/l Axt@ﬂ“«e (/lxt,e)@ﬂ

C=ex) m@)=Trte) 1@u I ve)@pu
x@pu ¢ (v,e)@[£ - V(, ey
1@u V¢ Uxt',d)@u, £fresh @£ T(s,e)l:py YT c @ py
s @ py ¢ c @ pg

Exercise 33. Evaluate (Ax.xx)(I I) using big-step call-by-need evaluation.

3.3 Abstract machine
The following machine is based on Sestoft’s:

Definition 34 (Milner by-need Asbtract Machine). Syntax:

States S = (t|n|D|E)
Stacks 7 = o|t:x
Dumps D ::= (x,m):D
Global environments E ::= eo|[x—t]:E

The transition relation is defined as follows:

(ts|z|D|E) » (t|s:n|D]|E)
(Ax.t|s:x|D|E)y » {(t|n|D]|[x+ s]:E)

(x|z|D|E) » (t|e|(,x):D|E) ifE(x)=t
w|e|(x,z):D|E) » (*|xn|D]|[x+— v]:E)

Exercise 35. Evaluate (Ax.xx)({I) in Milner by-need Abstract Machine.

