Weak evaluation strategies in the λ-calculus

labandalambda

May 10, 2018

In this talk we will define three basic weak evaluation strategies: call-by-name, call-by-value, and call-byneed, by means of three formal presentations: small-step evaluation, big-step evaluation and an abstract machine. We will show how to prove that the three presentations are equivalent in the case of the call-by-name strategy. For the other two strategies similar techniques may be used (although the proofs are much more complex, especially in the call-by-need case).

Contents

1 Call-by-name

1.1 Small-step evaluation

Definition 1 (Small-step call-by-name evaluation). Terms and evaluation contexts are given by:

$$
\begin{array}{lll}
\text { Terms } & t & ::=x|\lambda x . t| t t \\
\text { Weak head contexts } & \mathrm{H} & ::=\square \mid \mathrm{H} t
\end{array}
$$

The binary relation of small-step call-by-name evaluation is defined as follows:

$$
\mathrm{H}\langle(\lambda x . t) s\rangle \rightarrow_{\text {name }} \mathrm{H}\langle t\langle x:=s\}\rangle
$$

Remark 2 (Determinism). If $t \rightarrow_{\text {name }} t_{1}$ and $t \rightarrow_{\text {name }} t_{2}$ then $t_{1}=t_{2}$.
Exercise 3. Evaluate ($\lambda x . x x)(I I)$ using small-step call-by-name evaluation.

1.2 Big-step evaluation

Definition 4 (Big-step call-by-name evaluation). Call-by-name environments and closures are given by the following abstract syntax:

$$
\begin{array}{lll}
\text { Environments } & e & ::=\bullet \mid[x \mapsto c]: e \\
\text { Closures } & c & ::=(t, e)
\end{array}
$$

Environment concatenation is written $e_{1}: e_{2}$. We also write dom e for the set of variables defined in e, and $e(x)$ for the value of x in e.

The big-step call-by-name evaluation judgment $t \Downarrow^{e} c$, relates a source term t, an environment e mapping variables to closures, and the resulting closure c. Derivable judgments are inductively defined as follows:

$$
\frac{e(x)=\left(t, e^{\prime}\right) \quad t \Downarrow^{e^{\prime}} c}{x \Downarrow^{e} c} \overline{\lambda x . t \Downarrow^{e}(\lambda x . t, e)} \frac{t \Downarrow^{e}\left(\lambda x . t^{\prime}, e^{\prime}\right) \quad t^{\prime} \Downarrow^{[x \mapsto(s, e)]: e^{\prime}} c}{t s \Downarrow^{e} c}
$$

Remark 5. If $t \Downarrow^{e} c$ holds, then c is of the form $(\lambda x . s, e)$.
Exercise 6. Evaluate $(\lambda x . x x)(I I)$ using big-step call-by-name evaluation.
Algorithm 7. A big-step call-by-name evaluator in Haskell:

```
type Id = String
data Term = Var Id | Lam Id Term | App Term Term
type Env = [(Id, Closure)]
data Closure = C Term Env
eval :: Term -> Env -> Closure
eval (Var x) e = let Just (C t e') = lookup x e in
    eval t e'
eval (Lam x t) e = C (Lam x t) e
eval (App t s) e = let C (Lam x t') e' = eval t e in
    eval t' ((x, C s e) : e')
```


1.3 Abstract machine

Definition 8 (Krivine Abstract Machine - KAM). Syntax:

$$
\begin{array}{lll}
\text { States } & S & ::=\langle t| e|\pi\rangle \\
\text { Stacks } & \pi & ::=\bullet \mid c: \pi
\end{array}
$$

The transition relation is defined as $\mapsto \stackrel{\text { def }}{=} \mapsto_{\text {app }} \cup \mapsto_{1 a m} \cup \mapsto_{\text {var }}$, where:

$$
\begin{array}{rlll}
\langle t s| e|\pi\rangle & \mapsto_{\mathrm{app}} & \langle t| e|(s, e): \pi\rangle & \\
\langle\lambda x . t| e|c: \pi\rangle & \mapsto_{\mathrm{lam}} & \langle t|[x \mapsto c]: e|\pi\rangle & \\
\langle x| e|\pi\rangle & \mapsto_{\mathrm{var}} & \langle t| e^{\prime}|\pi\rangle & \text { if } e(x)=\left(t, e^{\prime}\right)
\end{array}
$$

Stack concatenation is denoted by $\pi_{1}: \pi_{2}$.
Remark 9 (Determinism). If $S \mapsto S_{1}$ and $S \mapsto S_{2}$ then $S_{1}=S_{2}$.
Exercise 10. Evaluate $(\lambda x . x x)(I I)$ in the KAM.
Algorithm 11. An implementation of the KAM in Haskell:

```
type Id = String
data State = S Term Stack Env
data Term = Var Id | Lam Id Term | App Term Term
type Env = [(Id, Closure)]
data Closure = C Term Env
```

```
type Stack = [Closure]
exec1 :: State -> Maybe State
exec1 (S (App t s) p e) = Just (S t (C s e : p) e)
exec1 (S (Lam x t) (c : p) e) = Just (S t p ((x, c) : e))
exec1 (S (Var x) p e) = let Just (C t e') = lookup x e
    in Just (S t p e')
exec1 _ = Nothing
exec :: State -> State
exec s = case exec1 s of
    Nothing -> s
    Just s' -> exec s'
```

Definition 12. The notion of being closed is defined inductively as follows:

- A term t is closed in an environment e if $f \mathrm{v}(t) \subseteq \operatorname{dom} e$. A term t is closed (a secas) if $\mathrm{fv}(t)=\varnothing$.
- A closure (t, e) is closed if the term t is closed in e and, moreover, e is closed.
- An environment $\left[x_{1} \mapsto c_{1}\right]: \ldots:\left[x_{n} \mapsto c_{n}\right]$ is closed if c_{i} is closed for all $i=1$..n.
- A stack $c_{1}: \ldots: c_{n}$ is closed if c_{i} is closed for all $i=1$..n.
- A state $\langle t| e|\pi\rangle$ is closed if the closure (t, e) is closed and the stack π is closed.

Lemma 13 (KAM invariant). If $S \mapsto S^{\prime}$ and S is closed then S^{\prime} is closed. Remark that ift is a closed term, then $\langle t| \cdot|\cdot\rangle$ trivially fulfills the invariant.

Proof. By case analysis on the transitions.

1.4 Equivalence: big-step evaluation vs. abstract machine

Lemma 14 (Stack weakening). If $\langle t| e\left|\pi_{1}\right\rangle \mapsto\left\langle t^{\prime}\right| e^{\prime}\left|\pi_{1}^{\prime}\right\rangle$ then $\langle t| e\left|\pi_{1}: \pi_{2}\right\rangle \mapsto\left\langle t^{\prime}\right| e^{\prime}\left|\pi_{1}^{\prime}: \pi_{2}\right\rangle$.
Proof. By case analysis on the transitions of the KAM.
Proposition 15 (From big-step to the KAM). Ift $\Downarrow^{e}\left(s, e^{\prime}\right)$ then $\langle t| e|\cdot\rangle \mapsto^{*}\langle s| e^{\prime}|\cdot\rangle$.
Proof. By induction on the derivation that $t \Downarrow^{e}\left(s, e^{\prime}\right)$ using Lem. ??.
As an intermediate step to prove the converse of Prop. ??, we need the following generalization of the judgment $t \Downarrow^{e} c$:

Definition 16 (Generalized evaluation). Big-step call-by-name evaluation is generalized for an arbitrary stack π as follows:

$$
\frac{t \Downarrow^{e} c}{t \Downarrow_{\pi}^{e} c} \frac{t \Downarrow^{e}\left(\lambda x . t^{\prime}, e^{\prime}\right) \quad t^{\prime} \Downarrow_{\pi}^{\left[x \mapsto c_{1}\right]: e^{\prime}} c_{2}}{t \Downarrow_{c_{1}: \pi}^{e} c_{2}}
$$

Lemma 17 (Properties of generalized evaluation). The judgment $t \Downarrow_{\pi}^{e} c$ has the following properties:

1. If $e(x)=\left(t, e^{\prime}\right)$ and $t \Downarrow_{\pi}^{e^{\prime}} c$ then $x \Downarrow_{\pi}^{e} c$.
2. If $t \Downarrow^{e}\left(\lambda x . t^{\prime}, e^{\prime}\right)$ and $t^{\prime} \Downarrow_{\pi}^{[x \mapsto(s, e)]: e^{\prime}} c$ then $t s \Downarrow_{\pi}^{e} c$.

Proof. By induction on π.
Proposition 18 (From KAM to big-step). If $S=\langle t| e|\pi\rangle \mapsto^{*}\langle s| e^{\prime}\left|\pi^{\prime}\right\rangle=S^{\prime}$ and S fulfills the KAM invariant and S^{\prime} is in \mapsto-normal form, then π^{\prime} is empty and $t \Downarrow_{\pi}^{e}\left(s, e^{\prime}\right)$.
Proof. By induction on the number of transitions in $S \mapsto^{*} S^{\prime}$ and case analysis on the shape of t, relying on Lem. ??.

1.5 Equivalence: small-step evaluation vs. abstract machine

Definition 19 (KAM decoding).

$$
\begin{array}{rll}
\langle t| e|\pi\rangle & \stackrel{\text { def }}{=} & \pi\langle t \underline{e}\rangle \\
\bullet & \xlongequal{\text { def }} & \square \\
\frac{c: \pi}{\pi} & \stackrel{\text { def }}{=} & \pi\langle\square \underline{c}\rangle \\
t- & \stackrel{\pi}{=} & t \\
t \underline{[x \mapsto c]: e} & \stackrel{\text { def }}{=} & t\{x:=\underline{c}\} \underline{e}
\end{array}
$$

Lemma 20 (Properties of the decoding). The KAM decoding has the following properties:

1. $(\lambda x . t)^{\underline{e}}=\lambda x . t^{e}$
2. $(t s)^{\underline{e}}=t^{e}-s^{e}$
3. If e and e^{\prime} are closed environments equal up to a permutation then $t=t t^{e^{\prime}}$.
4. Ift is a closed term, then $t^{e}=t$.

Proof. By induction on e.
Proposition 21 (KAM correctness). If $S \mapsto S^{\prime}$ and the states fulfill the KAM invariant then $\underline{S} \rightarrow_{\text {name }}^{*} \underline{S^{\prime}}$. Furthermore:

- If $S \mapsto_{\text {app }} S^{\prime}$ then $\underline{S}=\underline{S^{\prime}}$.
- If $S \mapsto_{\text {lam }} S^{\prime}$ then $\underline{S} \rightarrow_{\text {name }} \underline{S^{\prime}}$.
- If $S \mapsto_{\mathrm{var}} S^{\prime}$ then $\underline{S}=\underline{S^{\prime}}$.

Proof. By case analysis on the transitions of the KAM, using Lem. ??.
Proposition 22 (KAM completeness). If $t \rightarrow_{\text {name }} t^{\prime}$ and S is a state fulfilling the KAM invariant such that $\underline{S}=t$, then there exists a state S^{\prime} such that $S \mapsto^{*} S^{\prime}$ and $\underline{S^{\prime}}=t^{\prime}$.

Proof. Observe that the $\mapsto_{\text {var }}$ transition strictly decreases the size of the environment, and the $\mapsto_{\text {app }}$ transition preserves the size of the environment while strictly decreasing the size of the term. Hence $\mapsto_{\text {app, var }}$ is terminating.

Normalize S with respect to $\mapsto_{\text {app, var }}$ transitions, obtaining $S \mapsto^{*} S_{1}$. By correctness (Prop. ??), $t=$ $\underline{S}=\underline{S_{1}}$. Note that the term of S_{1} is an abstraction, so $S_{1}=\langle\lambda x . s| \pi|e\rangle$. If the stack π is empty, then
$t=S_{1}=(\lambda x . s)^{\underline{e}}$ is in $\rightarrow_{\text {name }}$-normal form contradicting the fact that $t \rightarrow_{\text {name }} t^{\prime}$. So the stack is non-empty, $\pi=\bar{c}: \pi^{\prime}$ and we have:

$$
S \mapsto_{\mathrm{app}, \mathrm{var}}^{*} S_{1}=\langle\lambda x . s| c: \pi^{\prime}|e\rangle \mapsto_{\mathrm{lam}}\langle s| \pi^{\prime}|[x \mapsto c]: e\rangle=S^{\prime}
$$

By correctness (Prop. ??), $t=\underline{S}=\underline{S_{1}} \rightarrow_{\text {name }} \underline{S^{\prime}}$. So by determinism of both \mapsto and $\rightarrow_{\text {name }}$ we conclude that $\underline{S^{\prime}}=t^{\prime}$, as required.

2 Call-by-value

2.1 Small-step evaluation

Definition 23 (Small-step call-by-value evaluation). Terms and evaluation contexts are given by:

Terms	t	$::=$	$x\|\lambda x . t\| t t$
Values	v	$::=$	$\lambda x . t$
Weak by-value contexts	V	$::=$	$\square\|\mathrm{V} t\| v \mathrm{~V}$

The binary relation of small-step call-by-value evaluation is defined as follows:

$$
\mathrm{V}\langle(\lambda x . t) v\rangle \rightarrow_{\text {value }} \mathrm{V}\langle t\{x:=v\}\rangle
$$

Exercise 24. Evaluate ($\lambda x . x x)(I I)$ using small-step call-by-value evaluation.

2.2 Big-step evaluation

Definition 25 (Big-step call-by-value evaluation). Call-by-value environments and closures are given by the following abstract syntax:

$$
\begin{array}{lll}
\text { Environments } & e & ::=\bullet \mid[x \mapsto c]: e \\
\text { Closures } & c & ::=(v, e)
\end{array}
$$

Derivability of the big-step call-by-value evaluation judgment $t \Downarrow^{e} c$ is defined as follows:

$$
\left.\frac{e(x)=c}{x \Downarrow^{e} c} \frac{}{\lambda x . t \Downarrow^{e}(\lambda x . t, e)} \frac{t \Downarrow^{e}\left(\lambda x . t^{\prime}, e^{\prime}\right)}{} \quad s \Downarrow^{e} c_{1} \quad t^{\prime} \Downarrow^{[x \mapsto c]: e^{\prime}} c_{2}\right) ~ t s \Downarrow^{e} c_{2}
$$

Exercise 26. Evaluate ($\lambda x . x x)(I I)$ using big-step call-by-value evaluation.

2.3 Abstract machine

Definition 27 (CEK Machine). Syntax:

$$
\begin{array}{lll}
\text { States } & S & ::=\langle t| e|\pi\rangle \\
\text { Stacks } & \pi & ::=\bullet|\mathbf{A}(t, e): \pi| \mathbf{F}(v, e): \pi
\end{array}
$$

The transition relation is defined as follows:

$$
\begin{array}{rlll}
\langle t s| e|\pi\rangle & \mapsto & \langle t| e|\mathbf{F}(s, e): \pi\rangle & \\
\langle v| e\left|\mathbf{A}\left(t, e^{\prime}\right): \pi\right\rangle & \mapsto & \left.\mapsto t\left|e^{\prime}\right| \mathbf{F}(v, e): \pi\right\rangle & \\
\langle v| e\left|\mathbf{F}\left(\lambda x . t, e^{\prime}\right): \pi\right\rangle & \mapsto & \langle t|[x \mapsto(v, e)]: e^{\prime}|\pi\rangle & \\
\langle x| e|\pi\rangle & \mapsto & \langle v| e^{\prime}|\pi\rangle & \text { if } e(x)=\left(v, e^{\prime}\right)
\end{array}
$$

Exercise 28. Evaluate $(\lambda x . x x)(I I)$ in the CEK.

3 Call-by-need

3.1 Small-step evaluation

In contrast to call-by-name and call-by-value, small-step call-by-need evaluation cannot be expressed directly in the λ-calculus. To be able to express call-by-need as a small-step reduction strategy, we need to extend the set of terms with explicit substitutions.

Definition 29 (Small-step call-by-need evaluation). Terms and evaluation contexts are given by:

Terms	t	$::=$	$x\|\lambda x . t\| t t \mid t[x:=t]$
Substitution contexts	L	$::=\square \mid \mathrm{L}[x:=t]$	
Values	v	$::=\lambda x . t$	
Weak by-need contexts	N	$::=\square\|\mathrm{N} t\| \mathrm{N}[x:=t] \mid \mathrm{N}\langle x\rangle[x:=\mathrm{N}]$	

Substitution contexts are lists of explicit substitutions, $\mathrm{L}=\square\left[x_{1}:=t_{1}\right] \ldots\left[x_{n}:=t_{n}\right]$. We write $t \mathrm{~L}$ for $t\left[x_{1}:=t_{1}\right] \ldots\left[x_{n}:=t_{n}\right]$ rather than $\mathrm{L}\langle t\rangle$. The binary relation of small-step call-by-need evaluation is defined as the union $\rightarrow_{\text {need }}=\rightarrow_{\mathrm{db}} \cup \rightarrow_{\mathrm{lv}} \cup \rightarrow_{\mathrm{gc}}$ of the following three relations:

$$
\begin{array}{rlll}
\mathrm{N}\langle(\lambda x . t) \mathrm{L} s\rangle & \rightarrow_{\mathrm{db}} & \mathrm{~N}\langle t[x:=s] \mathrm{L}\rangle & \text { distant beta } \\
\mathrm{N}_{1}\left\langle\mathrm{~N}_{2}\langle x\rangle[x:=v \mathrm{~L}]\right\rangle & \rightarrow_{\mathrm{l}} & \mathrm{~N}_{1}\left\langle\mathrm{~N}_{2}\langle v\rangle[x:=v] \mathrm{L}\right\rangle & \text { linear value substitution } \\
\mathrm{N}\langle t[x:=s]\rangle & \rightarrow_{\mathrm{gc}} & \mathrm{~N}\langle t\rangle \quad \text { if } x \notin \mathrm{fv}(t) & \text { garbage collection }
\end{array}
$$

The three rules above are not deterministic. For example, in a term like $(I I)[x:=t]$ the first and the third rule may apply. One can show that the system without the last rule is deterministic, and the garbage collection rule can be postponed:

Lemma 30 (Postponement of garbage-collection). Ift $\rightarrow_{\mathrm{gc}} \rightarrow_{\mathrm{db}, 1 \mathrm{v}}$ s then $t \rightarrow_{\mathrm{db}, \mathrm{lv}} \rightarrow_{\mathrm{gc}}^{*} s$.
Proof. By case analysis on all the possibilities in which $\mathrm{a} \rightarrow_{\mathrm{gc}}$ step is followed by $\mathrm{a} \rightarrow_{\mathrm{db}, \mathrm{lv}}$ step.
Exercise 31. Evaluate ($\lambda x . x x)(I I)$ using small-step call-by-need evaluation.

3.2 Big-step evaluation

Definition 32 (Big-step call-by-need evaluation). Let $\mathcal{L}=\left\{\ell_{1}, \ell_{2}, \ldots\right\}$ be a denumerable set of memory locations. Call-by-need environments and closures are given by the following abstract syntax:

$$
\begin{array}{lcl:l|l|}
\text { Environments } & e & ::=\ell]: e \\
\text { Memories } & \mu & ::=\bullet|[\ell \mapsto \mathbf{T}(t, e)]: \mu|[\ell \mapsto \mathbf{V}(v, e)]: \mu \\
\text { Closures } & c & ::=(v, e)
\end{array}
$$

Derivability of the big-step call-by-need evaluation judgment t @ $\mu_{1} \Downarrow^{e} c @ \mu_{2}$ is defined as follows:

$$
\begin{gathered}
\frac{\ell=e(x) \quad \mu(\ell)=\mathbf{V}\left(v, e^{\prime}\right)}{x @ \mu \Downarrow^{e}\left(v, e^{\prime}\right) @ \mu} \frac{}{\lambda x . t @ \mu \Downarrow^{e}(\lambda x . t, e) @ \mu} \\
\frac{\ell=e(x) \quad \mu_{1}(\ell)=\mathbf{T}\left(t, e^{\prime}\right) \quad t @ \mu_{1} \Downarrow^{e^{\prime}}\left(v, e^{\prime \prime}\right) @ \mu_{2}}{x @ \mu_{1} \Downarrow^{e}\left(v, e^{\prime \prime}\right) @\left[\ell \mapsto \mathbf{V}\left(v, e^{\prime \prime}\right)\right]: \mu_{2}} \\
\frac{t \text { @ } \mu_{1} \Downarrow^{e}\left(\lambda x . t^{\prime}, e^{\prime}\right) @ \mu_{2} \quad \ell \text { fresh } \quad t^{\prime} @[\ell \mapsto \mathbf{T}(s, e)]: \mu_{2} \Downarrow^{[x \mapsto \ell]: e^{\prime}} c @ \mu_{3}}{t s @ \mu_{1} \Downarrow^{e} c @ \mu_{3}}
\end{gathered}
$$

Exercise 33. Evaluate $(\lambda x . x x)(I I)$ using big-step call-by-need evaluation.

3.3 Abstract machine

The following machine is based on Sestoft's:
Definition 34 (Milner by-need Asbtract Machine). Syntax:

| States | S | $::=\langle t\| \pi\|D\| E\rangle$ |
| :--- | :--- | :--- | :--- |
| Stacks | π | $::=\bullet \mid t: \pi$ |
| Dumps | D | $::=(x, \pi): D$ |
| Global environments | E | $::=\bullet \mid[x \mapsto t]: E$ |

The transition relation is defined as follows:

$$
\begin{array}{rlll}
\langle t s| \pi|D| E\rangle & \mapsto & \langle t| s: \pi|D| E\rangle & \\
\langle\lambda x . t| s: \pi|D| E\rangle & \mapsto & \langle t| \pi|D|[x \mapsto s]: E\rangle & \\
\langle x| \pi|D| E\rangle & \mapsto & \langle t| \cdot|(x, \pi): D| E\rangle & \text { if } E(x)=t \\
\langle v| \cdot|(x, \pi): D| E\rangle & \mapsto & \left.\left\langle v^{\alpha}\right| \pi|D|[x \mapsto v]: E\right\rangle &
\end{array}
$$

Exercise 35. Evaluate $(\lambda x . x x)(I I)$ in Milner by-need Abstract Machine.

