
Weak evaluation strategies in the �-calculus

labandalambda

May 10, 2018

In this talk we will define three basic weak evaluation strategies: call-by-name, call-by-value, and call-by-
need, by means of three formal presentations: small-step evaluation, big-step evaluation and an abstract ma-
chine. We will show how to prove that the three presentations are equivalent in the case of the call-by-name
strategy. For the other two strategies similar techniques may be used (although the proofs are much more
complex, especially in the call-by-need case).

Contents

1 Call-by-name

1.1 Small-step evaluation
Definition 1 (Small-step call-by-name evaluation). Terms and evaluation contexts are given by:

Terms t ∶∶= x ∣ �x.t ∣ t t
Weak head contexts H ∶∶= □ ∣ H t

The binary relation of small-step call-by-name evaluation is defined as follows:

H⟨(�x.t) s⟩ →name H⟨t{x ∶= s}⟩

Remark 2 (Determinism). If t →name t1 and t →name t2 then t1 = t2.

Exercise 3. Evaluate (�x.xx)(II) using small-step call-by-name evaluation.

1.2 Big-step evaluation
Definition 4 (Big-step call-by-name evaluation). Call-by-name environments and closures are given by the
following abstract syntax:

Environments e ∶∶= ∙ ∣ [x↦ c]∶e
Closures c ∶∶= (t, e)

Environment concatenation is written e1∶e2. We also write dom e for the set of variables defined in e, and
e(x) for the value of x in e.

1

The big-step call-by-name evaluation judgment t ⇓e c, relates a source term t, an environment emapping
variables to closures, and the resulting closure c. Derivable judgments are inductively defined as follows:

e(x) = (t, e′) t ⇓e
′
c

x ⇓e c �x.t ⇓e (�x.t, e)
t ⇓e (�x.t′, e′) t′ ⇓[x↦(s,e)]∶e′ c

t s ⇓e c

Remark 5. If t ⇓e c holds, then c is of the form (�x.s, e).

Exercise 6. Evaluate (�x.xx)(II) using big-step call-by-name evaluation.

Algorithm 7. A big-step call-by-name evaluator in Haskell:

type Id = String
data Term = Var Id | Lam Id Term | App Term Term
type Env = [(Id, Closure)]
data Closure = C Term Env

eval :: Term -> Env -> Closure
eval (Var x) e = let Just (C t e') = lookup x e in

eval t e'
eval (Lam x t) e = C (Lam x t) e
eval (App t s) e = let C (Lam x t') e' = eval t e in

eval t' ((x, C s e) : e')

1.3 Abstract machine
Definition 8 (Krivine Abstract Machine — KAM). Syntax:

States S ∶∶= ⟨t ∣ e ∣ �⟩
Stacks � ∶∶= ∙ ∣ c∶�

The transition relation is defined as ↦≝↦app ∪ ↦lam ∪ ↦var, where:

⟨t s ∣ e ∣ �⟩ ↦app ⟨t ∣ e ∣ (s, e)∶�⟩
⟨�x.t ∣ e ∣ c∶�⟩ ↦lam ⟨t ∣ [x↦ c]∶e ∣ �⟩

⟨x ∣ e ∣ �⟩ ↦var ⟨t ∣ e′ ∣ �⟩ if e(x) = (t, e′)

Stack concatenation is denoted by �1∶�2.

Remark 9 (Determinism). If S ↦ S1 and S ↦ S2 then S1 = S2.

Exercise 10. Evaluate (�x.xx)(II) in the KAM.

Algorithm 11. An implementation of the KAM in Haskell:

type Id = String
data State = S Term Stack Env
data Term = Var Id | Lam Id Term | App Term Term
type Env = [(Id, Closure)]
data Closure = C Term Env

2

type Stack = [Closure]

exec1 :: State -> Maybe State
exec1 (S (App t s) p e) = Just (S t (C s e : p) e)
exec1 (S (Lam x t) (c : p) e) = Just (S t p ((x, c) : e))
exec1 (S (Var x) p e) = let Just (C t e') = lookup x e

in Just (S t p e')
exec1 _ = Nothing

exec :: State -> State
exec s = case exec1 s of

Nothing -> s
Just s' -> exec s'

Definition 12. The notion of being closed is defined inductively as follows:

• A term t is closed in an environment e if fv(t) ⊆ dom e. A term t is closed (a secas) if fv(t) = ∅.

• A closure (t, e) is closed if the term t is closed in e and, moreover, e is closed.

• An environment [x1 ↦ c1]∶…∶[xn ↦ cn] is closed if ci is closed for all i = 1..n.

• A stack c1∶…∶cn is closed if ci is closed for all i = 1..n.

• A state ⟨t ∣ e ∣ �⟩ is closed if the closure (t, e) is closed and the stack � is closed.

Lemma 13 (KAM invariant). If S ↦ S′ and S is closed then S′ is closed. Remark that if t is a closed term, then
⟨t ∣ ∙ ∣ ∙⟩ trivially fulfills the invariant.

Proof. By case analysis on the transitions. ◪

1.4 Equivalence: big-step evaluation vs. abstract machine
Lemma 14 (Stack weakening). If ⟨t ∣ e ∣ �1⟩ ↦ ⟨t′ ∣ e′ ∣ �′1⟩ then ⟨t ∣ e ∣ �1∶�2⟩ ↦ ⟨t′ ∣ e′ ∣ �′1∶�2⟩.

Proof. By case analysis on the transitions of the KAM. ◪

Proposition 15 (From big-step to the KAM). If t ⇓e (s, e′) then ⟨t ∣ e ∣ ∙⟩ ↦∗
⟨s ∣ e′ ∣ ∙⟩.

Proof. By induction on the derivation that t ⇓e (s, e′) using Lem. ??. ◪

As an intermediate step to prove the converse of Prop. ??, we need the following generalization of the
judgment t ⇓e c:

Definition 16 (Generalized evaluation). Big-step call-by-name evaluation is generalized for an arbitrary
stack � as follows:

t ⇓e c

t ⇓e� c
t ⇓e (�x.t′, e′) t′ ⇓[x↦c1]∶e′

� c2
t ⇓ec1∶� c2

Lemma 17 (Properties of generalized evaluation). The judgment t ⇓e� c has the following properties:

3

1. If e(x) = (t, e′) and t ⇓e′� c then x ⇓e� c.

2. If t ⇓e (�x.t′, e′) and t′ ⇓[x↦(s,e)]∶e′
� c then ts ⇓e� c.

Proof. By induction on �. ◪

Proposition 18 (From KAM to big-step). If S = ⟨t ∣ e ∣ �⟩ ↦∗
⟨s ∣ e′ ∣ �′⟩ = S′ and S fulfills the KAM

invariant andS′ is in ↦-normal form, then �′ is empty and t ⇓e� (s, e′).

Proof. By induction on the number of transitions in S ↦∗ S′ and case analysis on the shape of t, relying
on Lem. ??. ◪

1.5 Equivalence: small-step evaluation vs. abstract machine
Definition 19 (KAM decoding).

⟨t ∣ e ∣ �⟩ ≝ �⟨te⟩
∙ ≝ □

c∶� ≝ �⟨□c⟩
t∙ ≝ t

t[x↦c]∶e ≝ t{x ∶= c}e

Lemma 20 (Properties of the decoding). The KAM decoding has the following properties:

1. (�x.t)e = �x.te

2. (t s)e = te se

3. If e and e′ are closed environments equal up to a permutation then te = te′ .

4. If t is a closed term, then te = t.

Proof. By induction on e. ◪

Proposition 21 (KAM correctness). If S ↦ S′ and the states fulfill the KAM invariant then S →∗
name S

′. Fur-
thermore:

• IfS ↦app S′ thenS = S′.

• IfS ↦lam S′ thenS →name S′.

• IfS ↦var S′ thenS = S′.

Proof. By case analysis on the transitions of the KAM, using Lem. ??. ◪

Proposition 22 (KAM completeness). If t→name t′ andS is a state fulfilling the KAM invariant such thatS = t,
then there exists a stateS′ such thatS ↦∗ S′ andS′ = t′.

Proof. Observe that the ↦var transition strictly decreases the size of the environment, and the ↦app tran-
sition preserves the size of the environment while strictly decreasing the size of the term. Hence ↦app,var
is terminating.

Normalize S with respect to ↦app,var transitions, obtaining S ↦∗ S1. By correctness (Prop. ??), t =
S = S1. Note that the term of S1 is an abstraction, so S1 = ⟨�x.s ∣ � ∣ e⟩. If the stack � is empty, then

4

t = S1 = (�x.s)e is in →name-normal form contradicting the fact that t→name t′. So the stack is non-empty,
� = c∶�′ and we have:

S ↦∗
app,var S1 = ⟨�x.s ∣ c∶�′ ∣ e⟩ ↦lam ⟨s ∣ �′ ∣ [x↦ c]∶e⟩ = S′

By correctness (Prop. ??), t = S = S1 →name S′. So by determinism of both ↦ and →name we conclude that
S′ = t′, as required.

2 Call-by-value

2.1 Small-step evaluation
Definition 23 (Small-step call-by-value evaluation). Terms and evaluation contexts are given by:

Terms t ∶∶= x ∣ �x.t ∣ t t
Values v ∶∶= �x.t
Weak by-value contexts V ∶∶= □ ∣ V t ∣ v V

The binary relation of small-step call-by-value evaluation is defined as follows:

V⟨(�x.t) v⟩ →value V⟨t{x ∶= v}⟩

Exercise 24. Evaluate (�x.xx)(II) using small-step call-by-value evaluation.

2.2 Big-step evaluation
Definition 25 (Big-step call-by-value evaluation). Call-by-value environments and closures are given by the
following abstract syntax:

Environments e ∶∶= ∙ ∣ [x↦ c]∶e
Closures c ∶∶= (v, e)

Derivability of the big-step call-by-value evaluation judgment t ⇓e c is defined as follows:

e(x) = c

x ⇓e c �x.t ⇓e (�x.t, e)
t ⇓e (�x.t′, e′) s ⇓e c1 t′ ⇓[x↦c]∶e′ c2

t s ⇓e c2
Exercise 26. Evaluate (�x.xx)(II) using big-step call-by-value evaluation.

2.3 Abstract machine
Definition 27 (CEK Machine). Syntax:

States S ∶∶= ⟨t ∣ e ∣ �⟩
Stacks � ∶∶= ∙ ∣ A(t, e)∶� ∣ F(v, e)∶�

The transition relation is defined as follows:
⟨t s ∣ e ∣ �⟩ ↦ ⟨t ∣ e ∣ F(s, e)∶�⟩

⟨v ∣ e ∣ A(t, e′)∶�⟩ ↦ ⟨t ∣ e′ ∣ F(v, e)∶�⟩
⟨v ∣ e ∣ F(�x.t, e′)∶�⟩ ↦ ⟨t ∣ [x↦ (v, e)]∶e′ ∣ �⟩

⟨x ∣ e ∣ �⟩ ↦ ⟨v ∣ e′ ∣ �⟩ if e(x) = (v, e′)

Exercise 28. Evaluate (�x.xx)(II) in the CEK.

5

3 Call-by-need

3.1 Small-step evaluation
In contrast to call-by-name and call-by-value, small-step call-by-need evaluation cannot be expressed di-
rectly in the �-calculus. To be able to express call-by-need as a small-step reduction strategy, we need to
extend the set of terms with explicit substitutions.

Definition 29 (Small-step call-by-need evaluation). Terms and evaluation contexts are given by:

Terms t ∶∶= x ∣ �x.t ∣ t t ∣ t[x ∶= t]
Substitution contexts L ∶∶= □ ∣ L[x ∶= t]
Values v ∶∶= �x.t
Weak by-need contexts N ∶∶= □ ∣ N t ∣ N[x ∶= t] ∣ N⟨x⟩[x ∶= N]

Substitution contexts are lists of explicit substitutions, L = □[x1 ∶= t1]… [xn ∶= tn]. We write tL for
t[x1 ∶= t1]… [xn ∶= tn] rather than L⟨t⟩. The binary relation of small-step call-by-need evaluation is
defined as the union →need= →db ∪→lv ∪→gc of the following three relations:

N⟨(�x.t)L s⟩ →db N⟨t[x ∶= s]L⟩ distant beta
N1⟨N2⟨x⟩[x ∶= vL]⟩ →lv N1⟨N2⟨v⟩[x ∶= v]L⟩ linear value substitution

N⟨t[x ∶= s]⟩ →gc N⟨t⟩ if x ∉ fv(t) garbage collection

The three rules above are not deterministic. For example, in a term like (II)[x ∶= t] the first and the
third rule may apply. One can show that the system without the last rule is deterministic, and the garbage
collection rule can be postponed:

Lemma 30 (Postponement of garbage-collection). If t →gc→db,lv s then t→db,lv→
∗
gc
s.

Proof. By case analysis on all the possibilities in which a →gc step is followed by a →db,lv step. ◪

Exercise 31. Evaluate (�x.xx)(II) using small-step call-by-need evaluation.

3.2 Big-step evaluation
Definition 32 (Big-step call-by-need evaluation). Let = {l1,l2,…} be a denumerable set of memory
locations. Call-by-need environments and closures are given by the following abstract syntax:

Environments e ∶∶= ∙ ∣ [x↦ l]∶e
Memories � ∶∶= ∙ ∣ [l ↦ T(t, e)]∶� ∣ [l ↦ V(v, e)]∶�
Closures c ∶∶= (v, e)

Derivability of the big-step call-by-need evaluation judgment t@�1 ⇓e c@�2 is defined as follows:

l = e(x) �(l) = V(v, e′)
x@� ⇓e (v, e′)@� �x.t@� ⇓e (�x.t, e)@�

l = e(x) �1(l) = T(t, e′) t@�1 ⇓
e′ (v, e′′)@�2

x@�1 ⇓
e (v, e′′)@ [l ↦ V(v, e′′)]∶�2

t@�1 ⇓
e (�x.t′, e′)@�2 l fresh t′@[l ↦ T(s, e)]∶�2 ⇓[x↦l]∶e′ c@�3

ts@�1 ⇓
e c@�3

6

Exercise 33. Evaluate (�x.xx)(II) using big-step call-by-need evaluation.

3.3 Abstract machine
The following machine is based on Sestoft’s:

Definition 34 (Milner by-need Asbtract Machine). Syntax:

States S ∶∶= ⟨t ∣ � ∣ D ∣ E⟩
Stacks � ∶∶= ∙ ∣ t∶�
Dumps D ∶∶= (x, �)∶D
Global environments E ∶∶= ∙ ∣ [x↦ t]∶E

The transition relation is defined as follows:

⟨ts ∣ � ∣ D ∣ E⟩ ↦ ⟨t ∣ s∶� ∣ D ∣ E⟩
⟨�x.t ∣ s∶� ∣ D ∣ E⟩ ↦ ⟨t ∣ � ∣ D ∣ [x↦ s]∶E⟩

⟨x ∣ � ∣ D ∣ E⟩ ↦ ⟨t ∣ ∙ ∣ (x, �)∶D ∣ E⟩ ifE(x) = t
⟨v ∣ ∙ ∣ (x, �)∶D ∣ E⟩ ↦ ⟨v� ∣ � ∣ D ∣ [x↦ v]∶E⟩

Exercise 35. Evaluate (�x.xx)(II) in Milner by-need Abstract Machine.

7

