Basic propositional logic

labandalambda

April 24, 2019

In these notes we review the proofs of soundness and completeness for a Hilbert-style proof system for propositional logic. The proof of completeness relies on compactness.

1 Syntax

Definition 1 (Formulas). Let Var be a denumerable set of propositional variables $p_{1}, p_{2}, p_{3}, \ldots$. The set Form of formulas is given by the grammar:

$$
A::=p|\top| \perp|\neg A| A \wedge A|A \vee A| A \rightarrow A
$$

We write $\mathrm{fv}(A)$ for the free variables of A. A context Γ is a set of formulas.

2 Semantics and compactness

Definition 2 (Valuations). A valuation is a function $V: \operatorname{Var} \rightarrow \mathbf{2}$. Valuations are extended to formulas $_^{V}: \operatorname{Var} \rightarrow$ Form as follows:

p^{V}	def $V(p)$
T^{V}	cf 1
\perp^{V}	ef 0
$(\neg A)^{V}$	
$(A \wedge B)^{V}$	${ }_{\text {def }} A^{V} \cdot B^{V}$
$(A \vee B)^{V}$	def $A^{V} \sqcup B^{V}$
$(A \rightarrow B)^{V}$	(ef $\left(1-A^{V}\right) \sqcup B^{V}$

where - denotes the product and \sqcup denotes the maximum.
Definition 3 (Logical consequence). We write " \equiv " for various notions of logical consequence:

- $V \vDash A$ holds if $A^{V}=1$.
- $V \vDash \Gamma$ holds if $V \vDash A$ for every $A \in \Gamma$.
- $\vDash \Gamma$ holds if $V \vDash \Gamma$ for every valuation $V:$ Form $\rightarrow \mathbf{2}$.
- $\Gamma \vDash A$ holds if $V \vDash \Gamma$ implies $V \vDash A$ for every valuation $V:$ Form $\rightarrow \mathbf{2}$.

We say that Γ is valid or a tautology if $V \vDash \Gamma$ for every valuation V : Form $\rightarrow \mathbf{2}$. We say that Γ is satisfiable if $V \vDash \Gamma$ for some valuation $V:$ Form $\rightarrow \mathbf{2}$, and unsatisfiable otherwise. Two formulas A, B are logically equivalent if for every valuation V : Form $\rightarrow \mathbf{2} V \vDash A$ holds if and only if $V \vDash B$ holds. Logical equivalence is defined similarly for contexts.

Remark 4. $\Gamma \vDash A$ holds if and only if $\Gamma, \neg A$ is unsatisfiable.
Theorem 5 (Compactness). The following are equivalent:

1. Γ is satisfiable.
2. Γ^{\prime} is satisfiable for every finite subset $\Gamma^{\prime} \subseteq \Gamma$

Proof. $(1 \Longrightarrow 2)$ Immediate. $(2 \Longrightarrow 1)$ For each $n \in \mathbb{N}$, let Γ_{n} be the set of formulas in Γ that use at most the first n propositional variables, i.e.

$$
\Gamma_{n} \stackrel{\text { def }}{=}\left\{A \in \Gamma \mid f v(A) \subseteq\left\{p_{1}, \ldots, p_{n}\right\}\right\}
$$

The set Γ_{n} may be infinite, but up to logical equivalence it contains at most $2^{2^{n}}$ formulas. So for each n there is a finite set $\Gamma_{n}^{\prime} \subseteq \Gamma_{n}$ logically equivalent to Γ_{n}. Since Γ_{n}^{\prime} is satisfiable, there is a valuation V_{n} such that $V_{n} \vDash \Gamma_{n}$ for all $n \in \mathbb{N}$. Note moreover that if $i \geq n$ then $V_{i} \vDash \Gamma_{n}$.

Now for each $n \in \mathbb{N}_{0}$ we inductively define a set $I_{n} \subseteq \mathbb{N}$ in such a way that

- I_{n} is infinite;
- if $i, j \in I_{n}$ then V_{i} and V_{j} coincide on the first n propositional variables; and
- $I_{0} \supseteq I_{1} \supseteq I_{2} \supseteq \ldots$

To do so, set $I_{0} \stackrel{\text { def }}{=} \mathbb{N}$ and

$$
I_{n+1} \stackrel{\text { def }}{=} \begin{cases}E_{n}^{1} & \text { if } E_{n}^{1} \text { is infinite } \\ E_{n}^{0} & \text { otherwise }\end{cases}
$$

where $E_{n}^{b}=\left\{i \in I_{n} \mid i \geq n+1, V_{i}\left(p_{n+1}\right)=b\right\}$.
Now we define a valuation $V: \operatorname{Var} \rightarrow \mathbf{2}$ as follows:

$$
V\left(p_{n}\right) \stackrel{\text { def }}{=} V_{i}\left(p_{n}\right) \quad \text { for any } i \in I_{n}
$$

noting that if $i \geq n$ then $V_{i}\left(p_{n}\right)=V\left(p_{n}\right)$. To conclude, we claim that $V \vDash \Gamma$. Indeed, let $A \in \Gamma$. Then $A \in \Gamma_{n}$ for some $n \in \mathbb{N}$. In particular, take $i \in I_{n}$. Then $V_{i} \vDash \Gamma_{n}$ because $i \geq n$, so also $V_{i} \vDash A$. Moreover $A^{V_{i}}=A^{V}$ because A uses only the first n variables, so $V \vDash A$ as required.

Corollary 6. If $\Gamma \vDash A$ then there is a finite subset $\Gamma^{\prime} \subseteq \Gamma$ such that $\Gamma^{\prime} \vDash A$.
Proof. By the previous remark, $\Gamma \vDash A$ holds if and only if the set $\Gamma, \neg A$ is unsatisfiable. So if $\Gamma \vDash A$ by Compactness there exists a finite unsatisfiable subset $\Gamma_{0} \subseteq \Gamma, \neg A$. Without loss of generality we may assume that $\neg A \in \Gamma_{0}$ so $\Gamma_{0}=\left(\Gamma^{\prime}, \neg A\right)$ is unsatisfiable. This in turn means that $\Gamma^{\prime} \vDash A$.

3 Hilbert-style proof system

Definition 7 (Propositional proof system). The only deduction rule is modus ponens:

$$
\frac{\vdash P: A \rightarrow B \quad \vdash Q: A}{\vdash(P \cdot Q): B}
$$

Plus the following axioms, instantiated on arbitrary formulas A, B, \ldots :

Implication

$$
\begin{aligned}
K & : \\
S & :(B \rightarrow(B \rightarrow A) \\
S & (A \rightarrow(B \rightarrow C)) \rightarrow(A \rightarrow B) \rightarrow(A \rightarrow C)
\end{aligned}
$$

Truth and falsity

$\begin{aligned} \text { trivial } & : \\ \text { abort } & : \\ & \perp \rightarrow A\end{aligned}$

Negation

$$
\begin{array}{lll}
\text { negi }:(A \rightarrow B) \rightarrow((A \rightarrow \neg B) \rightarrow \neg A) & \\
\text { nege } & : A \rightarrow(\neg A \rightarrow B) & \text { NB. Redundant if dneg is allowed. } \\
\text { dneg } & : \neg \neg A \rightarrow A & \text { NB. Classical. }
\end{array}
$$

Conjunction

pair : $A \rightarrow(B \rightarrow(A \wedge B))$
$\pi_{1} \quad: \quad(A \wedge B) \rightarrow A$
$\pi_{2} \quad: \quad(A \wedge B) \rightarrow B$

Disjunction

$$
\begin{array}{rll}
\mathrm{in}_{1} & : A \rightarrow(A \vee B) \\
\mathrm{in}_{2} & : B \rightarrow(A \vee B) \\
\text { match } & : & (A \rightarrow C) \rightarrow((B \rightarrow C) \rightarrow((A \vee B) \rightarrow C))
\end{array}
$$

We write $\Gamma \vdash A$ if A can be proved using modus ponens, the axioms, and hypotheses from Γ. We assume that \rightarrow is right-associative and \cdot is left-associative. Application $P \cdot Q$ is written $P Q$.

Lemma 8 (Identity). $\vdash A \rightarrow A$ holds for any formula A.
Proof. It suffices to take id $\stackrel{\text { def }}{=} S K K$:

```
\(\stackrel{\vdash}{\vdash}:(A \rightarrow(A \rightarrow A) \rightarrow A) \rightarrow(A \rightarrow A \rightarrow A) \rightarrow A \rightarrow A \vdash K: A \rightarrow(A \rightarrow A) \rightarrow A\)
    \(\vdash S K:(A \rightarrow A \rightarrow A) \rightarrow A \rightarrow A \quad \vdash K: A \rightarrow A \rightarrow A\)
    \(\vdash S K K: A \rightarrow A\)
```

Lemma 9 (Weakening). If $\Gamma \vdash A$ and $\Gamma \subseteq \Gamma^{\prime}$ then $\Gamma^{\prime} \vdash A$.
Proof. Straightforward by induction on the derivation of $\Gamma \vdash A$.
Theorem 10 (Deduction Theorem). $\Gamma, A \vdash B$ if and only if $\Gamma \vdash A \rightarrow B$.
Proof. The (\Leftarrow) direction is immediate since by Weakening (Lem. 9) we have that $\Gamma, A \vdash A \rightarrow B$ so:

$$
\frac{\Gamma, A \vdash A \rightarrow B \quad \Gamma, A \vdash A}{\Gamma, A \vdash B}
$$

For the (\Rightarrow) direction we proceed by induction on the derivation of $\Gamma, A \vdash B$. There are three cases, either (1) we use an axiom or an assumption from Γ, (2) we use A, or (3) we use the modus ponens rule:

1. Axiom or fixed assumption. That is, the derivation of $\Gamma, A \vdash B$ is of the form:

$$
\overline{\Gamma, A \vdash B}
$$

where B is one of the axioms (K, S, trivial, etc.) or $B \in \Gamma$. Then B can also be proved under Γ so we have:

$$
\frac{\Gamma \vdash K: B \rightarrow A \rightarrow B \quad \Gamma \vdash B}{\Gamma \vdash A \rightarrow B}
$$

2. Identity. That is, the derivation of $\Gamma, A \vdash B$ is of the form:

$$
\overline{\Gamma, A \vdash A}
$$

Then by the Identity lemma (Lem. 8) we have:

$$
\overline{\Gamma \vdash A \rightarrow A}
$$

3. Modus ponens. That is, the derivation of $\Gamma, A \vdash B$ is of the form:

$$
\frac{\Gamma, A \vdash C \rightarrow B \quad \Gamma, A \vdash C}{\Gamma, A \vdash B}
$$

So by i.h. on each of the premises we have:

$\frac{\text { i.h. }}{\Gamma \vdash S:(A \rightarrow(C \rightarrow B)) \rightarrow(A \rightarrow C) \rightarrow(A \rightarrow B)}$	$\frac{1}{\Gamma \vdash A \rightarrow(C \rightarrow B)}$	$\frac{\text { i.h. }}{\Gamma \vdash}$
$\Gamma \vdash(A \rightarrow C) \rightarrow(A \rightarrow B)$		

3.1 Basic facts

Following, we state and prove some basic principles.

1. Contrapositive ($\Gamma, A \rightarrow B \vdash \neg B \rightarrow \neg A$).

By the Deduction Theorem (Thm. 10), it suffices to show that $\Gamma, x: A \rightarrow B, y: \neg B \vdash \neg A$. Indeed:

$$
\Gamma, x: A \rightarrow B, y: \neg B \vdash \operatorname{negi} x(\underbrace{K y}_{A \rightarrow \neg B}): \neg A
$$

2. Explosion principle $(\Gamma, A, \neg A \vdash B)$. This is an immediate consequence of the Deduction Theorem (Thm. 10) and axiom nege. Moreover, if dneg is allowed, nege is redundant:

$$
\Gamma, x: A, y: \neg A \vdash \operatorname{dneg}(\operatorname{negi}_{(\underbrace{K x}_{\neg B \rightarrow A})}^{(\underbrace{K y}_{\neg B \rightarrow \neg A})}): B
$$

3. False antecedent $(\Gamma, \neg A \vdash A \rightarrow B)$. Immediate from the explosion principle and the Deduction Theorem (Thm. 10).
4. True consequent $(\Gamma, B \vdash A \rightarrow B)$. Immediate from the axiom $K: B \rightarrow A \rightarrow B$ and the Deduction Theorem (Thm. 10).
5. Disproving an implication $(\Gamma, A, \neg B \vdash \neg(A \rightarrow B)$).

By the true consequent property we have that $\Gamma, A, \neg B, A \rightarrow B \vdash B$ so by the Deduction Theorem (Thm. 10) $\Gamma, A, \neg B \vdash P:(A \rightarrow B) \rightarrow B$. Then:

$$
\Gamma, x: A, y: \neg B \vdash \operatorname{negi} \underbrace{P}_{(A \rightarrow B) \rightarrow B}(\underbrace{K y}_{(A \rightarrow B) \rightarrow \neg B}): \neg(A \rightarrow B)
$$

6. Conjunction introduction ($\Gamma, A, B \vdash A \wedge B$). By the Deduction Theorem (Thm. 10) and the axiom pair.
7. Negated conjunction introduction $(\Gamma, \neg A \vdash \neg(A \wedge B)$ and $\Gamma, \neg B \vdash \neg(A \wedge B)$).

$$
\Gamma, x: \neg A \vdash \operatorname{negi} \underbrace{\pi_{1}}_{(A \wedge B) \rightarrow A}(\underbrace{K x}_{(A \wedge B) \rightarrow \neg A}): \neg(A \wedge B)
$$

Similarly:

$$
\Gamma, y: \neg B \vdash \text { negi } \underbrace{\pi_{2}}_{(A \wedge B) \rightarrow B}(\underbrace{K y}_{(A \wedge B) \rightarrow \neg B}): \neg(A \wedge B)
$$

8. Disjunction introduction ($\Gamma, A \vdash A \vee B$ and $\Gamma, B \vdash A \vee B$). By the Deduction Theorem (Thm. 10) and axioms $\mathrm{in}_{1} / \mathrm{in}_{2}$ respectively.
9. Negated disjunction introduction ($\Gamma, \neg A, \neg B \vdash \neg(A \vee B)$). Recall that \vdash nege $: A \rightarrow \neg A \rightarrow B$, so by the Deduction Theorem (Thm. 10), we may construct \vdash nege $^{\prime}: \neg A \rightarrow A \rightarrow B$ for arbitrary formulas A, B.

Now let C be any provable formula, e.g. $C=\mathrm{T}$ or $C=(z \rightarrow z)$, and let $\vdash P: C$. Then:

$$
\Gamma, x: \neg A, y: \neg B \vdash \operatorname{negi}(\underbrace{K P}_{(A \vee B) \rightarrow C})(\underbrace{\operatorname{match}(\underbrace{\text { nege }^{\prime} x}_{A \rightarrow C})}_{(A \vee B) \rightarrow \neg C}(\underbrace{\text { nege }^{\prime} y}_{B \rightarrow C}))
$$

10. Double negation introduction $(\Gamma, A \vdash \neg \neg A)$.

$$
\Gamma, x: A \vdash \operatorname{negi}(\underbrace{K x}_{\neg A \rightarrow A}) \underbrace{\text { id }}_{\neg A \rightarrow \neg A}: \neg \neg A
$$

11. Proof by cases (if $\Gamma, A \vdash B$ and $\Gamma, \neg A \vdash B$ then $\Gamma \vdash B$). By the Deduction Theorem (Thm. 10) and Contrapositive we have that $\Gamma \vdash P: \neg B \rightarrow \neg A$ and $\Gamma \vdash Q: \neg B \rightarrow \neg \neg A$.

$$
\Gamma \vdash \operatorname{dneg}(\underbrace{\text { negi } P Q}_{\neg \neg B}): B
$$

4 Soundness and completeness

Proposition 11 (Soundness). If $\Gamma \vdash A$ then $\Gamma \vDash A$.
Proof. By induction on the derivation of $\Gamma \vdash A$. There are three cases:

1. Axiom. It is routine to check that all the axioms are valid. For example, for the axiom K, let V : $\operatorname{Var} \rightarrow \mathbf{2}$ be any valuation. Then $(A \rightarrow(B \rightarrow A))^{V}=\left(1-A^{V}\right) \sqcup(1-B)^{V} \sqcup A^{V}=1$.
2. Assumption. Let $V: \operatorname{Var} \rightarrow \mathbf{2}$ be any valuation such that $V \vDash \Gamma$. In particular $V \vDash A$ because $A \in \Gamma$ so we are done.
3. Modus ponens. The proof is of the form:

$$
\frac{\Gamma \vdash B \rightarrow A \quad \Gamma \vdash B}{\Gamma \vdash A}
$$

By i.h. we have that $\Gamma \vDash B \rightarrow A$ and $\Gamma \vDash B$. Let $V: \operatorname{Var} \rightarrow \mathbf{2}$ be any valuation such that $V \vDash \Gamma$. Then $1=(B \rightarrow A)^{V}=\left(1-B^{V}\right) \sqcup A^{V}$ and $1=B^{V}$, so we must have $A^{V}=1$.

Lemma 12. Let A be a formula depending (at most) on the first n propositional variables $\left\{p_{1}, \ldots, p_{n}\right\}$. Let Γ be a context consisting of n formulas, the i-th of which is either p_{i} or $\neg p_{i}$. Then either $\Gamma \vdash A$ or $\Gamma \vdash \neg A$.

Proof. By induction on A.

1. Variable, $A=p_{i}$. Then either $\Gamma \vdash p_{i}$ or $\Gamma \vdash \neg p_{i}$.
2. Truth. $\Gamma:$ trivial : T.
3. Falsity. Γ : negi $\underbrace{\text { abort }}_{\perp \rightarrow \top} \underbrace{\text { abort }}_{\perp \rightarrow \neg T}: \neg \perp$.
4. Negation, $A=\neg B$. By i.h. there are two cases:
4.1 If $\Gamma \vdash B$, by Double negation introduction $\Gamma \vdash \neg \neg B=\neg A$.
4.2 If $\Gamma \vdash P: \neg B=A$ it is immediate.
5. Conjunction, $A=B \wedge C$. By i.h. on B there are two cases:
5.1 If $\Gamma \vdash B$, then by i.h. on C there are two subcases:
5.1.1 If $\Gamma \vdash C$, then by axiom pair we have $\Gamma \vdash B \wedge C=A$
5.1.2 If $\Gamma \vdash \neg C$, then by Negated conjunction introduction $\Gamma \vdash \neg(B \wedge C)=\neg A$.
5.2 If $\Gamma \vdash \neg B$, then by Negated conjunction introduction $\Gamma \vdash \neg(B \wedge C)=\neg A$.
6. Disjunction, $A=B \vee C$. By i.h. on B there are two cases:
6.1 If $\Gamma \vdash B$, then by axiom in_{1} we have $\Gamma \vdash B \wedge C=A$.
6.2 If $\Gamma \vdash \neg B$, then by i.h. on C there are two subcases:
6.2.1 If $\Gamma \vdash C$, then by axiom in_{2} we have $\Gamma \vdash B \vee C=A$
6.2.2 If $\Gamma \vdash \neg C$, then by Negated disjunction introduction $\Gamma \vdash \neg(B \vee C)=\neg A$.
7. Implication, $A=B \rightarrow C$. By i.h. on B there are two cases:
7.1 If $\Gamma \vdash B$, then by i.h. on C there are two cases:
7.1.1 If $\Gamma \vdash C$, then by True consequent we have $\Gamma \vdash B \rightarrow C=A$.
7.1.2 If $\Gamma \vdash \neg C$, then by Disproving an implication we have $\Gamma \vdash \neg(B \rightarrow C)=A$.
7.2 If $\Gamma \vdash \neg B$, then by False antecedent we have $\Gamma \vdash B \rightarrow C=A$.

The previous lemma can be generalized when the context consists of $k \leq n$ formulas.
Lemma 13. Let A be a formula depending (at most) on the first n propositional variables $\left\{p_{1}, \ldots, p_{n}\right\}$. Let Γ be a context consisting of $k \leq n$ formulas, the i-th of which is either p_{i} or $\neg p_{i}$. Moreover, suppose that $\vDash A$. Then either $\Gamma \vdash A$ or $\Gamma \vdash \neg A$.

Proof. By induction on k downwards from n to 0 (i.e. on $n-k$).

1. Base case, $k=n$. This is precisely the previous lemma (Lem. 12).
2. Induction, " $k+1 \Longrightarrow k$ ". Consider the context Γ extended with p_{k+1}. By i.h. there are two possibilities, $\Gamma, p_{k+1} \vdash A$ or $\Gamma, p_{k+1} \vdash \neg A$. The second case is not possible since, by Soundness (Prop. 11), we would have that $\Gamma, p_{k+1} \vDash \neg A$, i.e. there is a valuation V such that $V \vDash \Gamma, p_{k+1}$ and $A^{V}=0$. But note that $\vDash A$ by hypothesis, so $A^{V}=1$, a contradiction. Hence Γ, $p_{k+1} \vdash A$.
Similarly, if we consider the context Γ extended with $\neg p_{k+1}$ we obtain by i.h. that $\Gamma, \neg p_{k+1} \vdash A$.
Finally, note that $\Gamma, p_{k+1} \vdash A$ and $\Gamma, \neg p_{k+1} \vdash A$ together entail $\Gamma \vdash A$ using the principle of Proof by cases.

Theorem 14 (Completeness). The following hold:

1. Completeness. If $\vDash A$ then $\vdash A$.
2. Implicational completeness. If $\Gamma \vDash A$ then $\Gamma \vdash A$.

Proof. For item 1., by the previous lemma (Lem. 13) in the particular case in which $k=0$, we have that either $\vdash A$ or $\vdash \neg A$. The second case is not possible since, by Soundness (Prop. 11), we would have that $\vDash \neg A$, i.e. that there is a valuation V such that $A^{V}=0$. But note that $\vDash A$ by hypothesis, so $A^{V}=1$, a contradiction. Hence $\vdash A$.

For item 2., suppose that $\Gamma \vDash A$. By the corollary of compactness (Coro. 6) there exists a finite subset $\left\{B_{1}, \ldots, B_{n}\right\} \subseteq \Gamma$ such that $B_{1}, \ldots, B_{n} \vDash A$. This in turn means that $\vDash B_{1} \rightarrow \ldots \rightarrow B_{n} \rightarrow A$. By item 1. of this theorem, we have $\vdash B_{1} \rightarrow \ldots \rightarrow B_{n} \rightarrow A$. By the Deduction Theorem (Thm. 10) we have $\Gamma^{\prime} \vdash A$. Finally, by Weakening (Lem. 9), $\Gamma \vdash A$.

