Basic propositional logic

labandalambda

April 24, 2019

In these notes we review the proofs of soundness and completeness for a Hilbert-style proof system for propositional logic. The proof of completeness relies on compactness.

1 Syntax

Definition 1 (Formulas). Let Var be a denumerable set of *propositional variables* $p_1, p_2, p_3, ...$ The set Form of formulas is given by the grammar:

$$A ::= p \mid \top \mid \bot \mid \neg A \mid A \land A \mid A \lor A \mid A \to A$$

We write fv(A) for the free variables of A. A context Γ is a set of formulas.

2 Semantics and compactness

Definition 2 (Valuations). A valuation is a function V : Var \rightarrow 2. Valuations are extended to formulas $-^{V}$: Var \rightarrow Form as follows:

$$\begin{array}{cccc} p^{V} & \stackrel{\text{def}}{=} & V(p) \\ \top^{V} & \stackrel{\text{def}}{=} & 1 \\ \perp^{V} & \stackrel{\text{def}}{=} & 0 \\ (\neg A)^{V} & \stackrel{\text{def}}{=} & 1 - A^{V} \\ (A \land B)^{V} & \stackrel{\text{def}}{=} & A^{V} \land B^{V} \\ (A \lor B)^{V} & \stackrel{\text{def}}{=} & A^{V} \sqcup B^{V} \\ (A \to B)^{V} & \stackrel{\text{def}}{=} & (1 - A^{V}) \sqcup B^{V} \end{array}$$

where \cdot denotes the product and \sqcup denotes the maximum.

Definition 3 (Logical consequence). We write "⊨" for various notions of *logical consequence*:

- $V \vDash A$ holds if $A^V = 1$.
- $V \vDash \Gamma$ holds if $V \vDash A$ for every $A \in \Gamma$.
- \models Γ holds if $V \models \Gamma$ for every valuation V : Form $\rightarrow 2$.
- $\Gamma \vDash A$ holds if $V \vDash \Gamma$ implies $V \vDash A$ for every valuation V: Form $\rightarrow 2$.

We say that Γ is valid or a tautology if $V \models \Gamma$ for every valuation V: Form $\rightarrow 2$. We say that Γ is satisfiable if $V \models \Gamma$ for some valuation V: Form $\rightarrow 2$, and unsatisfiable otherwise. Two formulas A, B are logically equivalent if for every valuation V: Form $\rightarrow 2 V \models A$ holds if and only if $V \models B$ holds. Logical equivalence is defined similarly for contexts.

Remark 4. $\Gamma \vDash A$ holds if and only if Γ , $\neg A$ is unsatisfiable.

Theorem 5 (Compactness). The following are equivalent:

- 1. Γ is satisfiable.
- 2. Γ' is satisfiable for every finite subset $\Gamma' \subseteq \Gamma$

Proof. $(1 \implies 2)$ Immediate. $(2 \implies 1)$ For each $n \in \mathbb{N}$, let Γ_n be the set of formulas in Γ that use at most the first *n* propositional variables, *i.e.*

$$\Gamma_n \stackrel{\text{def}}{=} \{ A \in \Gamma \mid \mathsf{fv}(A) \subseteq \{ p_1, \dots, p_n \} \}$$

The set Γ_n may be infinite, but up to logical equivalence it contains at most 2^{2^n} formulas. So for each *n* there is a finite set $\Gamma'_n \subseteq \Gamma_n$ logically equivalent to Γ_n . Since Γ'_n is satisfiable, there is a valuation V_n such that $V_n \models \Gamma_n$ for all $n \in \mathbb{N}$. Note moreover that if $i \ge n$ then $V_i \models \Gamma_n$.

Now for each $n \in \mathbb{N}_0$ we inductively define a set $I_n \subseteq \mathbb{N}$ in such a way that

- I_n is infinite;
- if $i, j \in I_n$ then V_i and V_j coincide on the first *n* propositional variables; and
- $I_0 \supseteq I_1 \supseteq I_2 \supseteq \dots$

To do so, set $I_0 \stackrel{\text{def}}{=} \mathbb{N}$ and

$$I_{n+1} \stackrel{\text{def}}{=} \begin{cases} E_n^1 & \text{if } E_n^1 \text{ is infinite} \\ E_n^0 & \text{otherwise} \end{cases}$$

where $E_n^b = \{i \in I_n \mid i \ge n+1, V_i(p_{n+1}) = b\}.$

Now we define a valuation V: Var \rightarrow 2 as follows:

$$V(p_n) \stackrel{\text{def}}{=} V_i(p_n) \quad \text{for any } i \in I_n$$

noting that if $i \ge n$ then $V_i(p_n) = V(p_n)$. To conclude, we claim that $V \vDash \Gamma$. Indeed, let $A \in \Gamma$. Then $A \in \Gamma_n$ for some $n \in \mathbb{N}$. In particular, take $i \in I_n$. Then $V_i \vDash \Gamma_n$ because $i \ge n$, so also $V_i \vDash A$. Moreover $A^{V_i} = A^V$ because A uses only the first n variables, so $V \vDash A$ as required.

Corollary 6. If $\Gamma \vDash A$ then there is a finite subset $\Gamma' \subseteq \Gamma$ such that $\Gamma' \vDash A$.

Proof. By the previous remark, $\Gamma \vDash A$ holds if and only if the set Γ , $\neg A$ is unsatisfiable. So if $\Gamma \vDash A$ by Compactness there exists a finite unsatisfiable subset $\Gamma_0 \subseteq \Gamma$, $\neg A$. Without loss of generality we may assume that $\neg A \in \Gamma_0$ so $\Gamma_0 = (\Gamma', \neg A)$ is unsatisfiable. This in turn means that $\Gamma' \vDash A$.

3 Hilbert-style proof system

Definition 7 (Propositional proof system). The only deduction rule is *modus ponens*:

$$\frac{\vdash P : A \to B \quad \vdash Q : A}{\vdash (P \cdot Q) : B}$$

Plus the following axioms, instantiated on arbitrary formulas A, B, \ldots

```
Implication
         K : A \to (B \to A)
         S \quad : \quad (A \to (B \to C)) \to (A \to B) \to (A \to C)
Truth and falsity
    trivial : ⊤
     abort : \bot \to A
Negation
      negi : (A \rightarrow B) \rightarrow ((A \rightarrow \neg B) \rightarrow \neg A)
                                                                NB. Redundant if dneg is allowed.
     nege : A \to (\neg A \to B)
                                                                NB. Classical.
     dneg : \neg \neg A \rightarrow A
Conjunction
       pair
             : A \to (B \to (A \land B))
        \pi_1 : (A \land B) \to A
        \pi_2 : (A \land B) \to B
Disjunction
        in<sub>1</sub> : A \rightarrow (A \lor B)
        in<sub>2</sub> : B \rightarrow (A \lor B)
    match : (A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C))
```

We write $\Gamma \vdash A$ if A can be proved using *modus ponens*, the axioms, and hypotheses from Γ . We assume that \rightarrow is right-associative and \cdot is left-associative. Application $P \cdot Q$ is written PQ.

Lemma 8 (Identity). $\vdash A \rightarrow A$ holds for any formula A.

Proof. It suffices to take id $\stackrel{\text{def}}{=} S K K$:

$\overline{\vdash S} : (A \to (A \to A) \to A) \to (A \to A \to A) \to A \to A \overline{\vdash K}$	$: A \to (A \to A) \to A$
$\vdash SK : (A \to A \to A) \to A \to A$	$\overline{\vdash K : A \to A \to A}$
$\vdash SKK : A \to A$	

Lemma 9 (Weakening). If $\Gamma \vdash A$ and $\Gamma \subseteq \Gamma'$ then $\Gamma' \vdash A$.

Proof. Straightforward by induction on the derivation of $\Gamma \vdash A$.

Theorem 10 (Deduction Theorem). $\Gamma, A \vdash B$ if and only if $\Gamma \vdash A \rightarrow B$.

Proof. The (\Leftarrow) direction is immediate since by Weakening (Lem. 9) we have that Γ , $A \vdash A \rightarrow B$ so:

$$\frac{\Gamma, A \vdash A \to B \quad \Gamma, A \vdash A}{\Gamma, A \vdash B}$$

For the (\Rightarrow) direction we proceed by induction on the derivation of Γ , $A \vdash B$. There are three cases, either (1) we use an axiom or an assumption from Γ , (2) we use A, or (3) we use the *modus ponens* rule:

1. **Axiom or fixed assumption.** That is, the derivation of Γ , $A \vdash B$ is of the form:

$$\Gamma, A \vdash B$$

where *B* is one of the axioms (*K*, *S*, trivial, etc.) or $B \in \Gamma$. Then *B* can also be proved under Γ so we have: $\Gamma \vdash K : B \to A \to B = \Gamma \vdash B$

$$\frac{\Gamma \vdash K : B \to A \to B \qquad \Gamma \vdash B}{\Gamma \vdash A \to B}$$

2. **Identity.** That is, the derivation of Γ , $A \vdash B$ is of the form:

$$\Gamma, A \vdash A$$

Then by the Identity lemma (Lem. 8) we have:

$$\Gamma \vdash A \to A$$

3. **Modus ponens.** That is, the derivation of Γ , $A \vdash B$ is of the form:

$$\frac{\Gamma, A \vdash C \to B \quad \Gamma, A \vdash C}{\Gamma, A \vdash B}$$

So by *i.h.* on each of the premises we have:

$$\begin{array}{c} \hline i.h. \\ \hline \Gamma \vdash S : (A \rightarrow (C \rightarrow B)) \rightarrow (A \rightarrow C) \rightarrow (A \rightarrow B) \\ \hline \Gamma \vdash (A \rightarrow C) \rightarrow (A \rightarrow B) \\ \hline \Gamma \vdash A \rightarrow C \\ \hline \Gamma \vdash A \rightarrow B \end{array} \qquad \begin{array}{c} i.h. \\ \hline \Gamma \vdash A \rightarrow C \\ \hline \end{array}$$

3.1 Basic facts

Following, we state and prove some basic principles.

1. **Contrapositive** ($\Gamma, A \to B \vdash \neg B \to \neg A$). By the Deduction Theorem (Thm. 10), it suffices to show that $\Gamma, x : A \to B, y : \neg B \vdash \neg A$. Indeed:

$$\Gamma, x : A \to B, y : \neg B \vdash \operatorname{negi} x (\underbrace{Ky}_{A \to \neg B}) : \neg A$$

2. Explosion principle (Γ , A, $\neg A \vdash B$). This is an immediate consequence of the Deduction Theorem (Thm. 10) and axiom nege. Moreover, if dneg is allowed, nege is redundant:

$$\Gamma, x : A, y : \neg A \vdash \mathsf{dneg}\left(\mathsf{negi}\left(\underbrace{K x}_{\neg B \to A} \left(\underbrace{K y}_{\neg B \to \neg A}\right)\right) : B\right)$$

- 3. **False antecedent** ($\Gamma, \neg A \vdash A \rightarrow B$). Immediate from the explosion principle and the Deduction Theorem (Thm. 10).
- 4. **True consequent (** Γ , $B \vdash A \rightarrow B$ **).** Immediate from the axiom $K : B \rightarrow A \rightarrow B$ and the Deduction Theorem (Thm. 10).
- 5. **Disproving an implication (** Γ , A, $\neg B \vdash \neg (A \rightarrow B)$ **).** By the true consequent property we have that Γ , A, $\neg B$, $A \rightarrow B \vdash B$ so by the Deduction Theorem (Thm. 10) Γ , A, $\neg B \vdash P$: $(A \rightarrow B) \rightarrow B$. Then:

$$\Gamma, x : A, y : \neg B \vdash \mathsf{negi} \underbrace{P}_{(A \to B) \to B} (\underbrace{Ky}_{(A \to B) \to \neg B}) : \neg (A \to B)$$

- 6. **Conjunction introduction (** Γ , A, $B \vdash A \land B$ **).** By the Deduction Theorem (Thm. 10) and the axiom pair.
- 7. Negated conjunction introduction (Γ , $\neg A \vdash \neg (A \land B)$ and Γ , $\neg B \vdash \neg (A \land B)$).

$$\Gamma, x : \neg A \vdash \mathsf{negi} \underbrace{\pi_1}_{(A \land B) \to A} (\underbrace{K x}_{(A \land B) \to \neg A}) : \neg (A \land B)$$

Similarly:

$$\Gamma, y: \neg B \vdash \mathsf{negi} \underbrace{\pi_2}_{(A \land B) \to B} (\underbrace{K y}_{(A \land B) \to \neg B}): \neg (A \land B)$$

8. **Disjunction introduction (** Γ , $A \vdash A \lor B$ and Γ , $B \vdash A \lor B$ **).** By the Deduction Theorem (Thm. 10) and axioms in₁/in₂ respectively.

Negated disjunction introduction (Γ, ¬A, ¬B ⊢ ¬(A∨B)). Recall that ⊢ nege : A → ¬A → B, so by the Deduction Theorem (Thm. 10), we may construct ⊢ nege' : ¬A → A → B for arbitrary formulas A, B.

Now let *C* be any provable formula, *e.g.* $C = \top$ or $C = (z \rightarrow z)$, and let $\vdash P$: *C*. Then:

$$\Gamma, x : \neg A, y : \neg B \vdash \operatorname{negi}\left(\underbrace{KP}_{(A \lor B) \to C}\right) (\operatorname{match}\left(\operatorname{nege}' x\right) (\operatorname{nege}' y))$$

$$\underbrace{A \to C}_{(A \lor B) \to \neg C}$$

10. Double negation introduction (Γ , $A \vdash \neg \neg A$).

$$\Gamma, x : A \vdash \mathsf{negi}(\underbrace{Kx}_{\neg A \to A}) \underbrace{\mathsf{id}}_{\neg A \to \neg A} : \neg \neg A$$

11. **Proof by cases (if** Γ , $A \vdash B$ and Γ , $\neg A \vdash B$ then $\Gamma \vdash B$). By the Deduction Theorem (Thm. 10) and **Contrapositive** we have that $\Gamma \vdash P : \neg B \rightarrow \neg A$ and $\Gamma \vdash Q : \neg B \rightarrow \neg \neg A$.

$$\Gamma \vdash \operatorname{dneg}\left(\underbrace{\operatorname{negi} P Q}_{\neg \neg B}\right) : B$$

4 Soundness and completeness

Proposition 11 (Soundness). If $\Gamma \vdash A$ then $\Gamma \models A$.

Proof. By induction on the derivation of $\Gamma \vdash A$. There are three cases:

- 1. **Axiom.** It is routine to check that all the axioms are valid. For example, for the axiom K, let V : Var \rightarrow 2 be any valuation. Then $(A \rightarrow (B \rightarrow A))^V = (1 A^V) \sqcup (1 B)^V \sqcup A^V = 1$.
- 2. Assumption. Let $V : \text{Var} \to 2$ be any valuation such that $V \models \Gamma$. In particular $V \models A$ because $A \in \Gamma$ so we are done.
- 3. Modus ponens. The proof is of the form:

$$\frac{\Gamma \vdash B \to A \quad \Gamma \vdash B}{\Gamma \vdash A}$$

By *i.h.* we have that $\Gamma \models B \to A$ and $\Gamma \models B$. Let $V : \forall ar \to 2$ be any valuation such that $V \models \Gamma$. Then $1 = (B \to A)^V = (1 - B^V) \sqcup A^V$ and $1 = B^V$, so we must have $A^V = 1$.

Lemma 12. Let A be a formula depending (at most) on the first n propositional variables $\{p_1, \ldots, p_n\}$. Let Γ be a context consisting of n formulas, the *i*-th of which is either p_i or $\neg p_i$. Then either $\Gamma \vdash A$ or $\Gamma \vdash \neg A$.

Proof. By induction on *A*.

- 1. **Variable,** $A = p_i$. Then either $\Gamma \vdash p_i$ or $\Gamma \vdash \neg p_i$.
- 2. **Truth.** Γ : trivial : \top .
- 3. Falsity. Γ : negi abort abort $\neg \bot$.
- 4. **Negation**, $A = \neg B$. By *i.h.* there are two cases:
 - 4.1 If $\Gamma \vdash B$, by **Double negation introduction** $\Gamma \vdash \neg \neg B = \neg A$.

4.2 If $\Gamma \vdash P$: $\neg B = A$ it is immediate.

- 5. **Conjunction**, $A = B \land C$. By *i.h.* on *B* there are two cases:
 - 5.1 If $\Gamma \vdash B$, then by *i.h.* on *C* there are two subcases:
 - 5.1.1 If $\Gamma \vdash C$, then by axiom pair we have $\Gamma \vdash B \land C = A$
 - 5.1.2 If $\Gamma \vdash \neg C$, then by Negated conjunction introduction $\Gamma \vdash \neg (B \land C) = \neg A$.
 - 5.2 If $\Gamma \vdash \neg B$, then by Negated conjunction introduction $\Gamma \vdash \neg (B \land C) = \neg A$.
- 6. **Disjunction,** $A = B \lor C$. By *i.h.* on *B* there are two cases:
 - 6.1 If $\Gamma \vdash B$, then by axiom in₁ we have $\Gamma \vdash B \land C = A$.
 - 6.2 If $\Gamma \vdash \neg B$, then by *i.h.* on *C* there are two subcases:
 - 6.2.1 If $\Gamma \vdash C$, then by axiom in₂ we have $\Gamma \vdash B \lor C = A$
 - 6.2.2 If $\Gamma \vdash \neg C$, then by Negated disjunction introduction $\Gamma \vdash \neg (B \lor C) = \neg A$.
- 7. **Implication**, $A = B \rightarrow C$. By *i.h.* on *B* there are two cases:
 - 7.1 If $\Gamma \vdash B$, then by *i.h.* on *C* there are two cases:
 - 7.1.1 If $\Gamma \vdash C$, then by **True consequent** we have $\Gamma \vdash B \rightarrow C = A$.
 - 7.1.2 If $\Gamma \vdash \neg C$, then by **Disproving an implication** we have $\Gamma \vdash \neg (B \rightarrow C) = A$.
 - 7.2 If $\Gamma \vdash \neg B$, then by **False antecedent** we have $\Gamma \vdash B \rightarrow C = A$.

The previous lemma can be generalized when the context consists of $k \le n$ formulas.

Lemma 13. Let A be a formula depending (at most) on the first n propositional variables $\{p_1, \ldots, p_n\}$. Let Γ be a context consisting of $k \leq n$ formulas, the *i*-th of which is either p_i or $\neg p_i$. Moreover, suppose that $\models A$. Then either $\Gamma \vdash A$ or $\Gamma \vdash \neg A$.

Proof. By induction on *k* downwards from *n* to 0 (*i.e.* on n - k).

1. **Base case**, k = n. This is precisely the previous lemma (Lem. 12).

2. **Induction,** " $k + 1 \implies k$ ". Consider the context Γ extended with p_{k+1} . By *i.h.* there are two possibilities, Γ , $p_{k+1} \vdash A$ or Γ , $p_{k+1} \vdash \neg A$. The second case is not possible since, by Soundness (Prop. 11), we would have that Γ , $p_{k+1} \models \neg A$, *i.e.* there is a valuation V such that $V \models \Gamma$, p_{k+1} and $A^V = 0$. But note that $\vDash A$ by hypothesis, so $A^V = 1$, a contradiction. Hence Γ , $p_{k+1} \vdash A$.

Similarly, if we consider the context Γ extended with $\neg p_{k+1}$ we obtain by *i.h.* that $\Gamma, \neg p_{k+1} \vdash A$.

Finally, note that Γ , $p_{k+1} \vdash A$ and Γ , $\neg p_{k+1} \vdash A$ together entail $\Gamma \vdash A$ using the principle of **Proof** by cases.

Theorem 14 (Completeness). *The following hold:*

- 1. **Completeness.** *If* \vDash *A then* \vdash *A.*
- 2. Implicational completeness. If $\Gamma \vDash A$ then $\Gamma \vdash A$.

Proof. For item 1., by the previous lemma (Lem. 13) in the particular case in which k = 0, we have that either $\vdash A$ or $\vdash \neg A$. The second case is not possible since, by Soundness (Prop. 11), we would have that $\models \neg A$, *i.e.* that there is a valuation V such that $A^V = 0$. But note that $\models A$ by hypothesis, so $A^V = 1$, a contradiction. Hence $\vdash A$.

For item 2., suppose that $\Gamma \vDash A$. By the corollary of compactness (Coro. 6) there exists a finite subset $\{B_1, \ldots, B_n\} \subseteq \Gamma$ such that $B_1, \ldots, B_n \vDash A$. This in turn means that $\vDash B_1 \rightarrow \ldots \rightarrow B_n \rightarrow A$. By item 1. of this theorem, we have $\vdash B_1 \rightarrow \ldots \rightarrow B_n \rightarrow A$. By the Deduction Theorem (Thm. 10) we have $\Gamma' \vdash A$. Finally, by Weakening (Lem. 9), $\Gamma \vdash A$.