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1 Sequent Calculus

1.1 Proof system
Definition 1 (Formulas). The set of formulas is given by:

A ∶∶= p ∣ ¬A ∣ A ∨ A ∣ A ∧ A ∣ A → A

Recall that a formula is valid (or a tautology) if every valuation verifies it, and satisfiable if there is a valuation
that verifies it.

Definition 2 (Sequents). A sequent is a judgment of the formA1,… , An ⊢ B1,… , Bm. A sequent is valid if
(
⋀n
i=1 Ai

)

→
(
⋁m
i=1 Bi

)

is valid.

Definition 3. The propositional sequent calculus LK is given by the following rules:

Structural rules (weak)

Exchange
Γ1, A, B,Γ2 ⊢ Δ

Γ1, B, A,Γ2 ⊢ Δ
EL

Γ ⊢ Δ1, A, B,Δ2
Γ ⊢ Δ1, B, A,Δ2

ER

Contraction
A,A,Γ ⊢ Δ

A,Γ ⊢ Δ
CL

Γ ⊢ Δ, A, A

Γ ⊢ Δ, A
CR

Weakening
Γ ⊢ Δ

A,Γ ⊢ Δ
WL

Γ ⊢ Δ

Γ ⊢ Δ, A
WR

Axiom and cut rule (strong)

A ⊢ A
ax

Γ ⊢ Δ, A A,Γ ⊢ Δ

Γ ⊢ Δ
cut
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Rules for propositional connectives (strong)

Negation
Γ ⊢ Δ, A

¬A,Γ ⊢ Δ
¬L

A,Γ ⊢ Δ

Γ ⊢ Δ,¬A
¬R

Conjunction
A,B,Γ ⊢ Δ

A ∧ B,Γ ⊢ Δ
∧L

Γ ⊢ Δ, A Γ ⊢ Δ, B

Γ ⊢ Δ, A ∧ B
∧R

Disjunction
A,Γ ⊢ Δ B,Γ ⊢ Δ

A ∨ B,Γ ⊢ Δ
∨L

Γ ⊢ Δ, A, B

Γ ⊢ Δ, A ∨ B
∨R

Implication
Γ ⊢ Δ, A B,Γ ⊢ Δ

A → B,Γ ⊢ Δ
→L

A,Γ ⊢ Δ, B

Γ ⊢ Δ, A→ B
→R

Remark 4. As an alternative to the right rule for disjunction ∨R, one may define the propositional sequent
calculus LK′ with the two following rules:

Γ ⊢ Δ, A

Γ ⊢ Δ, A ∨ B
∨R1

Γ ⊢ Δ, B

Γ ⊢ Δ, A ∨ B
∨R2

It can be readily checked that {∨R} and {∨R1,∨R2} are interderivable:

Γ ⊢ Δ, A, B

Γ ⊢ Δ, A, A ∨ B
∨R2

Γ ⊢ Δ, A ∨ B,A
ER

Γ ⊢ Δ, A ∨ B,A ∨ B
∨R1

Γ ⊢ Δ, A ∨ B
CR

Γ ⊢ Δ, A

Γ ⊢ Δ, A, B
WR

Γ ⊢ Δ, A ∨ B
∨R

Γ ⊢ Δ, B

Γ ⊢ Δ, B, A
WR

Γ ⊢ Δ, A, B
ER

Γ ⊢ Δ, A ∨ B
∨R

Proposition 5 (Subformula property). If � is a cut-free proof, every formula in � is a subformula of the formula in
the end sequent.

Proof. Observe that, in every rule other than cut, formulas in the upper sequents are subformulas of for-
mulas in the lower sequent.

Definition 6. The length of a proof�, written ||�||, is the number of strong inferences in� (excluding exchange,
contraction, weakening, and axioms).

Definition 7. A sequent Γ ⊢ Δ is called classical (resp. intuitionistic, minimal, Pierce type) according to the
following table. The proof system restricted to sequents of the given form is called LK (resp. LJ, LM, LP).

classical (without restrictions) (LK)
intuitionistic Δ has at most one formula (LJ)
minimal Δ has exactly one formula (LM)
Pierce type Δ has at least one formula (LP)

(Important: in the intuitionistic and minimal variants, rules ∨R1 and ∨R2 rather than ∨R should be used.)
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Example 8. Items 1–11 are the Hilbert-style axioms. Items 13–16 are various De Morgan laws.

1. S: A→ (B → A)

2. K : (A → B → C)→ (A→ B)→ A → C

3. negi: (A→ B)→ (A→ ¬B)→ ¬A

4. nege: A → (¬A → B)

5. dneg: ¬¬A → A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . strictly classical

6. pair: A→ B → (A ∧ B)

7. �1: (A ∧ B)→ A

8. �2: (A ∧ B)→ B

9. in1: A→ (A ∨ B)

10. in2: B → (A ∨ B)

11. match: (A→ C)→ (B → C)→ (A ∨ B)→ C

12. De Morgan: ¬(p ∨ q)→ (¬p ∧ ¬q)

13. De Morgan: (¬p ∧ ¬q)→ ¬(p ∨ q)

14. De Morgan: (¬p ∨ ¬q)→ ¬(p ∧ q)

15. De Morgan: ¬(p ∧ q)→ (¬p ∨ ¬q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . strictly classical

16. Contrapositive: (p → q)→ (¬q → ¬p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . strictly classical

17. Pierce’s law: ((p→ q)→ p)→ p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . strictly classical

1.2 Soundness and completeness
Proposition 9 (Soundness). The propositional sequent calculus is sound, i.e. provable sequents are valid.

Proof. Observe that every rule preserves the property that the sequents are tautologies.

Lemma 10 (Inversion). Let I be an inference other than weakening. If the lower sequent is valid then the upper
sequents are valid.

Proof. Straightforward by inspection on all the rules except for WL and WR.

Lemma 11 (Completeness, with bounds). Let Γ ⊢ Δ be a valid sequent withm logical connectives. Then there is a
cut-free proof with strictly less than 2m strong inferences.

Proof. By induction on m. If m = 0, every formula is a propositional variable, so there is a variable p oc-
curring in both Γ and Δ. Hence we may prove Γ ⊢ Δ from the axiom p ⊢ p (using no strong inferences).

Now letm > 0. Note there is a formula either in Γ or inΔwhose outermost connective is either ¬, ∧, ∨,
or →. Hence there are eight subcases:
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1. Left negation. Suppose that there is a formula ¬A in Γ, and let Γ′ be the result of removing ¬A from
Γ. Note that ¬A,Γ′ ⊢ Δ is valid so by Inversion (Lem. 10) we have that Γ′ ⊢ Δ, A is also valid and
uses strictly less thanm connectives. So by i.h. there is a proof � of Γ′ ⊢ Δ, A using strictly less than
2m−1 strong inferences, and we may construct a proof �′:

Γ ⊢ Δ

�

Γ′ ⊢ Δ, A

¬A,Γ′ ⊢ Δ
¬L

Then ||�′|| < 2m−1 + 1 ≤ 2m.

2. Right negation. Similar to the Left negation case.

3. Left conjunction. Suppose that there is a formula A ∧ B in Γ, and let Γ′ be the result of removing
A ∧B from Γ. Note thatA ∧B,Γ′ ⊢ Δ is valid so by Inversion (Lem. 10) we have thatA,B,Γ′ ⊢ Δ is
also valid and uses strictly less thanm connectives. So by i.h. there is a proof � ofA,B,Γ′ ⊢ Δ using
strictly less than 2m−1 strong inferences, and we may construct a proof �′:

Γ ⊢ Δ

�

A,B,Γ′ ⊢ Δ

A ∧ B,Γ′ ⊢ Δ
∧L

Then ||�′|| < 2m−1 + 1 ≤ 2m.

4. Right conjunction. Suppose that there is a formula AB in Δ, and let Δ′ be the result of removing
A∧B fromΔ. Note that by Inversion (Lem. 10) the sequents Γ ⊢ Δ′, A and Γ ⊢ Δ′, B are both valid,
and use strictly less than m connectives. So by i.h. there is a proof �1 of Γ ⊢ Δ′, A and a proof �2 of
Γ ⊢ Δ′, B, each using strictly less than 2m−1 strong inferences, and we may construct a proof �′:

Γ ⊢ Δ

�1
Γ ⊢ Δ′, A

�2
Γ ⊢ Δ′, B

Γ ⊢ Δ′, A ∧ B
∧R

Then ||�|| = 1 + ||�1|| + ||�2|| < 2m−1.

5. Left disjunction. Similar to the Right conjunction case.

6. Right disjunction. Similar to the Left conjunction case.

7. Left implication. Similar to the Right conjunction case.

8. Right implication. Similar to the Left conjunction case.
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Theorem 12 (Completeness). Let Γ ⊢ Δ be a valid sequent. Then it has a cut-free proof.

Proof. An immediate consequence of Lem. 11.

Theorem 13 (Cut elimination). Let Γ ⊢ Δ be a provable sequent. Then there is a cut-free proof of Γ ⊢ Δ.

Proof. An immediate consequence of Soundness (Prop. 9) and Completeness (Thm. 12).

2 Refutation by Propositional Resolution
Definition 14. A literal is a propositional variable p or its negation¬p. For literals we define the convolution
p ≝ ¬p and ¬p ≝ p. A clause is a finite set of literals. A clause C = {x1,… , xn} represents, informally, the
disjunction

⋁n
i=1 xi.

If C and D are clauses and x is a literal such that x ∈ C and x ∈ D , we define the resolvent of C and D
(with respect to x) as:

Rx(C ,D ) ≝ (C ⧵ {x}) ∪ (D ⧵ {x})

A set of clauses Γ = {Ci}i∈I represents, informally, the conjunction
⋀

i∈I Ci. Given a set of clauses Γ
and a clause C , we define a judgment Γ⊳C whose meaning is defined via the following system of Proposi-
tional Resolution:

C ∈ Γ

Γ ⊳ C

Γ ⊳ C Γ ⊳D x ∈ C x ∈ D

Γ ⊳ Rx(C ,D )

The second rule is called the resolution rule. A refutation of Γ is a derivation ending in Γ ⊳∅.

Proposition 15 (Correctness of Propositional Resolution). If Γ ⊳∅ then Γ is unsatisfiable.

Proof. We prove the two following claims:

1. LetΓ be a satisfiable context and letC be the resolvent of two clauses inΓ. ThenΓ∪{C } is satisfiable.

2. Suppose that Γ ⊳ C is derivable, and let Γ ⊆ ΔwhereΔ is satisfiable. ThenΔ ∪ {C } is satisfiable.

To prove the first claim, suppose that C = {x1,… , xn, y1,… , ym} is the resolvent of {x1,… , xn, z} ∈ Γ
and {y1,… , ym, z} ∈ Γ. Let V be a valuation that verifies Γ. If zV = 0, then V must verify at least one of
x1,… , xm so C V = 1. On the other hand, if zV = 1 then zV = 0 so V must verify at least one of y1,… , ym
and also C V = 1.

To prove the second claim, proceed by induction on the derivation ofΓ⊳C . For the axiom we have that
C ∈ Γ ⊆ Δ andΔ is satisfiable by hypothesis so indeedΔ∪ {C } = Δ is satisfiable. For the resolution rule,
suppose that we deduce Γ ⊳ Rx(C ,D ) from Γ ⊳ C and Γ ⊳ D , and let Γ ⊆ Δ such thatΔ is satisfiable. By
i.h. on the first premise we obtain that Δ ∪ {C } is satisfiable. Now since Γ ⊆ Δ ∪ {C } we may apply the
i.h. on the second premise to obtain that Δ ∪ {C ,D} is satisfiable. Finally by the first claim we have that
Δ ∪ {C ,D ,Rx(C ,D )} is satisfiable. SoΔ ∪ {Rx(C ,D )} is also satisfiable.

Now to conclude the proof of the proposition, let Γ ⊳ ∅, and suppose that Γ is satisfiable. Then by the
second claim we have that Γ ∪ {∅} is satisfiable, which is a contradiction. Hence Γ is unsatisfiable.

Remark 16. One can apply the resolution method to check whether a formula A is valid. More precisely,
note thatA is valid if ¬A is unsatisfiable. Rewrite ¬A as an equivalent formula in conjunctive normal form
⋁n
i=1

⋀mi
j=1 xij and apply the resolution method to the set {Ci | 1 ≤ i ≤ n} where Ci is the clause Ci =

{xij | 1 ≤ j ≤ mi}.
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Example 17. To check that ¬(p∧ q)→ (¬p∨¬q) is valid, consider its negation ¬(¬(p∧ q)→ (¬p∨¬q)) and
note that it is equivalent to p ∧ q ∧ (¬p ∨ ¬q). Then taking Γ = {{p}, {q}, {¬p,¬q}} one has:

Γ ⊳ {p}
Γ ⊳ {q} Γ ⊳ {¬p,¬q}

Γ ⊳ {¬p}

Γ ⊳∅

Theorem 18 (Completeness of Propositional Resolution). If Γ is unsatisfiable, then Γ ⊳∅ is derivable.

Proof. By Compactness, we may assume thatΓ is finite. Hence the number n of distinct variables that occur
anywhere in Γ is finite. We proceed by induction on n. If n = 0, note that Γ cannot be empty, for it would
be satisfiable, so Γ = {∅} ⊳∅ and we are done.

If n > 0, let p be one variable that occurs somewhere in Γ. If a clause C ∈ Γ contains both p and ¬p,
then C is trivially satisfiable (i.e. any valuation verifies it) so without loss of generality we may assume that
Γ has no such clauses. Now let:

Δ ≝ {Rp(C ,D ) |C ∈ Γ, D ∈ Γ, p ∈ C , p ∈ D}
∪ {C |C ∈ Γ, x ∉ C , x ∉ C }

To conclude, observe thatΔ is satisfiable if and only if Γ is satisfiable, and the variable p does not occur in
Δ, so by i.h. we have thatΔ ⊳∅ as required.

6


