Sequent Calculus and Resolution for Propositional Logic

labandalambda

May 9, 2019

1 Sequent Calculus

1.1 Proof system

Definition 1 (Formulas). The set of formulas is given by:

$$A ::= p \mid \neg A \mid A \lor A \mid A \land A \mid A \to A$$

Recall that a formula is *valid* (or a *tautology*) if every valuation verifies it, and satisfiable if there is a valuation that verifies it.

Definition 2 (Sequents). A sequent is a judgment of the form $A_1, \ldots, A_n \vdash B_1, \ldots, B_m$. A sequent is valid if $(\bigwedge_{i=1}^n A_i) \rightarrow (\bigvee_{i=1}^m B_i)$ is valid.

Definition 3. The *propositional sequent calculus* LK is given by the following rules:

Structural rules (weak)

Exchange
$$\frac{\Gamma_{1}, A, B, \Gamma_{2} \vdash \Delta}{\Gamma_{1}, B, A, \Gamma_{2} \vdash \Delta} \text{ EL } \frac{\Gamma \vdash \Delta_{1}, A, B, \Delta_{2}}{\Gamma \vdash \Delta_{1}, B, A, \Delta_{2}} \text{ ER}$$
Contraction
$$\frac{A, A, \Gamma \vdash \Delta}{A, \Gamma \vdash \Delta} \text{ CL } \frac{\Gamma \vdash \Delta, A, A}{\Gamma \vdash \Delta, A} \text{ CR}$$
Weakening
$$\frac{\Gamma \vdash \Delta}{A, \Gamma \vdash \Delta} \text{ WL } \frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, A} \text{ WR}$$

Axiom and cut rule (strong)

$$\frac{}{A\vdash A} \text{ ax } \frac{\Gamma\vdash\Delta, A \quad A, \Gamma\vdash\Delta}{\Gamma\vdash\Delta} \text{ cut }$$

Rules for propositional connectives (strong)

Negation
$$\frac{\Gamma \vdash \Delta, A}{\neg A, \Gamma \vdash \Delta} \neg L$$
 $\frac{A, \Gamma \vdash \Delta}{\Gamma \vdash \Delta, \neg A} \neg R$ Conjunction $\frac{A, B, \Gamma \vdash \Delta}{A \land B, \Gamma \vdash \Delta} \land L$ $\frac{\Gamma \vdash \Delta, A \quad \Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \land B} \land R$ Disjunction $\frac{A, \Gamma \vdash \Delta}{A \lor B, \Gamma \vdash \Delta} \lor L$ $\frac{\Gamma \vdash \Delta, A \land B}{\Gamma \vdash \Delta, A \lor B} \lor R$ Implication $\frac{\Gamma \vdash \Delta, A \quad B, \Gamma \vdash \Delta}{A \lor B, \Gamma \vdash \Delta} \rightarrow L$ $\frac{A, \Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \to B} \rightarrow R$

Remark 4. As an alternative to the right rule for disjunction $\lor R$, one may define the propositional sequent calculus LK' with the two following rules:

$$\frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \lor B} \lor \mathbf{R}_1 \qquad \frac{\Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \lor B} \lor \mathbf{R}_2$$

It can be readily checked that $\{\lor R\}$ and $\{\lor R_1, \lor R_2\}$ are interderivable:

$$\frac{\frac{\Gamma \vdash \Delta, A, B}{\Gamma \vdash \Delta, A, A \lor B} \lor \mathbb{R}_{2}}{\frac{\Gamma \vdash \Delta, A \lor B, A}{\Gamma \vdash \Delta, A \lor B} \lor \mathbb{R}_{1}} \xrightarrow{\Gamma \vdash \Delta, A, B} \mathbb{R} \qquad \frac{\frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A, B} \lor \mathbb{R}}{\Gamma \vdash \Delta, A \lor B} \lor \mathbb{R} \qquad \frac{\frac{\Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A, B} \lor \mathbb{R}}{\Gamma \vdash \Delta, A \lor B} \lor \mathbb{R}$$

Proposition 5 (Subformula property). If π is a cut-free proof, every formula in π is a subformula of the formula in the end sequent.

Proof. Observe that, in every rule other than cut, formulas in the upper sequents are subformulas of formulas in the lower sequent.

Definition 6. The *length* of a proof π , written $\|\pi\|$, is the number of *strong inferences* in π (excluding exchange, contraction, weakening, and axioms).

Definition 7. A sequent $\Gamma \vdash \Delta$ is called *classical* (resp. *intuitionistic, minimal, Pierce type*) according to the following table. The proof system restricted to sequents of the given form is called LK (resp. LJ, LM, LP).

classical	(without restrictions)	(LK)
intuitionistic	Δ has at most one formula	(LJ)
minimal	Δ has exactly one formula	(LM)
Pierce type	Δ has at least one formula	(LP)

(**Important:** in the intuitionistic and minimal variants, rules $\lor R_1$ and $\lor R_2$ rather than $\lor R$ should be used.)

Example 8. Items 1–11 are the Hilbert-style axioms. Items 13–16 are various De Morgan laws.

1.2 Soundness and completeness

Proposition 9 (Soundness). The propositional sequent calculus is sound, i.e. provable sequents are valid.

Proof. Observe that every rule preserves the property that the sequents are tautologies. \Box

Lemma 10 (Inversion). Let I be an inference other than weakening. If the lower sequent is valid then the upper sequents are valid.

Proof. Straightforward by inspection on all the rules except for WL and WR.

Lemma 11 (Completeness, with bounds). Let $\Gamma \vdash \Delta$ be a valid sequent with *m* logical connectives. Then there is a cut-free proof with strictly less than 2^m strong inferences.

Proof. By induction on *m*. If m = 0, every formula is a propositional variable, so there is a variable *p* occurring in both Γ and Δ . Hence we may prove $\Gamma \vdash \Delta$ from the axiom $p \vdash p$ (using no strong inferences).

Now let m > 0. Note there is a formula either in Γ or in Δ whose outermost connective is either \neg , \land , \lor , or \rightarrow . Hence there are eight subcases:

1. **Left negation.** Suppose that there is a formula $\neg A$ in Γ , and let Γ' be the result of removing $\neg A$ from Γ . Note that $\neg A, \Gamma' \vdash \Delta$ is valid so by Inversion (Lem. 10) we have that $\Gamma' \vdash \Delta$, A is also valid and uses strictly less than m connectives. So by *i.h.* there is a proof π of $\Gamma' \vdash \Delta$, A using strictly less than 2^{m-1} strong inferences, and we may construct a proof π' :

$$\frac{\frac{\pi}{\Gamma'\vdash\Delta,A}}{\frac{\neg A,\Gamma'\vdash\Delta}{\Gamma\vdash\Delta}} \neg \mathbf{L}$$

Then $\|\pi'\| < 2^{m-1} + 1 \le 2^m$.

- 2. Right negation. Similar to the Left negation case.
- 3. Left conjunction. Suppose that there is a formula $A \wedge B$ in Γ , and let Γ' be the result of removing $A \wedge B$ from Γ . Note that $A \wedge B, \Gamma' \vdash \Delta$ is valid so by Inversion (Lem. 10) we have that $A, B, \Gamma' \vdash \Delta$ is also valid and uses strictly less than *m* connectives. So by *i.h.* there is a proof π of $A, B, \Gamma' \vdash \Delta$ using strictly less than 2^{m-1} strong inferences, and we may construct a proof π' :

$$\frac{\frac{\pi}{A, B, \Gamma' \vdash \Delta}}{\frac{A \land B, \Gamma' \vdash \Delta}{\Gamma \vdash \Delta} \land L}$$

Then $\|\pi'\| < 2^{m-1} + 1 \le 2^m$.

4. **Right conjunction.** Suppose that there is a formula *AB* in Δ , and let Δ' be the result of removing $A \wedge B$ from Δ . Note that by Inversion (Lem. 10) the sequents $\Gamma \vdash \Delta'$, *A* and $\Gamma \vdash \Delta'$, *B* are both valid, and use strictly less than *m* connectives. So by *i.h.* there is a proof π_1 of $\Gamma \vdash \Delta'$, *A* and a proof π_2 of $\Gamma \vdash \Delta'$, *B*, each using strictly less than 2^{m-1} strong inferences, and we may construct a proof π' :

$$\frac{\frac{\pi_1}{\Gamma \vdash \Delta', A} \quad \frac{\pi_2}{\Gamma \vdash \Delta', B}}{\frac{\Gamma \vdash \Delta', A \land B}{\Gamma \vdash \Delta} \land \mathbb{R}}$$

Then $\|\pi\| = 1 + \|\pi_1\| + \|\pi_2\| < 2^{m-1}$.

- 5. Left disjunction. Similar to the Right conjunction case.
- 6. Right disjunction. Similar to the Left conjunction case.
- 7. Left implication. Similar to the Right conjunction case.
- 8. Right implication. Similar to the Left conjunction case.

Theorem 12 (Completeness). Let $\Gamma \vdash \Delta$ be a valid sequent. Then it has a cut-free proof.

Proof. An immediate consequence of Lem. 11.

Theorem 13 (Cut elimination). Let $\Gamma \vdash \Delta$ be a provable sequent. Then there is a cut-free proof of $\Gamma \vdash \Delta$.

Proof. An immediate consequence of Soundness (Prop. 9) and Completeness (Thm. 12).

2 Refutation by Propositional Resolution

Definition 14. A *literal* is a propositional variable *p* or its negation $\neg p$. For literals we define the convolution $\overline{p} \stackrel{\text{def}}{=} \neg p$ and $\overline{\neg p} \stackrel{\text{def}}{=} p$. A *clause* is a finite set of literals. A clause $\mathscr{C} = \{x_1, \dots, x_n\}$ represents, informally, the disjunction $\bigvee_{i=1}^{n} x_i$.

If \mathscr{C} and \mathscr{D} are clauses and x is a literal such that $x \in \mathscr{C}$ and $\overline{x} \in \mathscr{D}$, we define the resolvent of \mathscr{C} and \mathscr{D} (with respect to x) as:

$$\mathsf{R}_{x}(\mathscr{C},\mathscr{D}) \stackrel{\text{def}}{=} (\mathscr{C} \setminus \{x\}) \cup (\mathscr{D} \setminus \{\overline{x}\})$$

A set of clauses $\Gamma = \{\mathscr{C}_i\}_{i \in I}$ represents, informally, the conjunction $\bigwedge_{i \in I} \mathscr{C}_i$. Given a set of clauses Γ and a clause \mathscr{C} , we define a judgment $\Gamma \triangleright \mathscr{C}$ whose meaning is defined via the following system of *Propositional Resolution*:

$$\frac{\mathscr{C} \in \Gamma}{\Gamma \triangleright \mathscr{C}} \quad \frac{\Gamma \triangleright \mathscr{C} \quad \Gamma \triangleright \mathscr{D} \quad x \in \mathscr{C} \quad \overline{x} \in \mathscr{D}}{\Gamma \triangleright \mathsf{R}_{x}(\mathscr{C}, \mathscr{D})}$$

The second rule is called the *resolution rule*. A *refutation* of Γ is a derivation ending in $\Gamma \triangleright \emptyset$.

Proposition 15 (Correctness of Propositional Resolution). If $\Gamma \triangleright \emptyset$ then Γ is unsatisfiable.

Proof. We prove the two following claims:

- 1. Let Γ be a satisfiable context and let \mathscr{C} be the resolvent of two clauses in Γ . Then $\Gamma \cup \{\mathscr{C}\}$ is satisfiable.
- 2. Suppose that $\Gamma \triangleright \mathscr{C}$ is derivable, and let $\Gamma \subseteq \Delta$ where Δ is satisfiable. Then $\Delta \cup \{\mathscr{C}\}$ is satisfiable.

To prove the first claim, suppose that $\mathscr{C} = \{x_1, \dots, x_n, y_1, \dots, y_m\}$ is the resolvent of $\{x_1, \dots, x_n, z\} \in \Gamma$ and $\{y_1, \dots, y_m, \overline{z}\} \in \Gamma$. Let *V* be a valuation that verifies Γ . If $z^V = 0$, then *V* must verify at least one of x_1, \dots, x_m so $\mathscr{C}^V = 1$. On the other hand, if $z^V = 1$ then $\overline{z}^V = 0$ so *V* must verify at least one of y_1, \dots, y_m and also $\mathscr{C}^V = 1$.

To prove the second claim, proceed by induction on the derivation of $\Gamma \triangleright \mathscr{C}$. For the axiom we have that $\mathscr{C} \in \Gamma \subseteq \Delta$ and Δ is satisfiable by hypothesis so indeed $\Delta \cup \{\mathscr{C}\} = \Delta$ is satisfiable. For the resolution rule, suppose that we deduce $\Gamma \triangleright \mathsf{R}_x(\mathscr{C}, \mathscr{D})$ from $\Gamma \triangleright \mathscr{C}$ and $\Gamma \triangleright \mathscr{D}$, and let $\Gamma \subseteq \Delta$ such that Δ is satisfiable. By *i.h.* on the first premise we obtain that $\Delta \cup \{\mathscr{C}\}$ is satisfiable. Now since $\Gamma \subseteq \Delta \cup \{\mathscr{C}\}$ we may apply the *i.h.* on the second premise to obtain that $\Delta \cup \{\mathscr{C}, \mathscr{D}\}$ is satisfiable. Finally by the first claim we have that $\Delta \cup \{\mathscr{C}, \mathscr{D}, \mathsf{R}_x(\mathscr{C}, \mathscr{D})\}$ is satisfiable. So $\Delta \cup \{\mathscr{R}_x(\mathscr{C}, \mathscr{D})\}$ is also satisfiable.

Now to conclude the proof of the proposition, let $\Gamma \triangleright \emptyset$, and suppose that Γ is satisfiable. Then by the second claim we have that $\Gamma \cup \{\emptyset\}$ is satisfiable, which is a contradiction. Hence Γ is unsatisfiable.

Remark 16. One can apply the resolution method to check whether a formula *A* is valid. More precisely, note that *A* is valid if $\neg A$ is unsatisfiable. Rewrite $\neg A$ as an equivalent formula in conjunctive normal form $\bigvee_{i=1}^{n} \bigwedge_{j=1}^{m_i} x_{ij}$ and apply the resolution method to the set $\{\mathscr{C}_i \mid 1 \leq i \leq n\}$ where \mathscr{C}_i is the clause $\mathscr{C}_i = \{x_{ij} \mid 1 \leq j \leq m_i\}$.

Example 17. To check that $\neg(p \land q) \rightarrow (\neg p \lor \neg q)$ is valid, consider its negation $\neg(\neg(p \land q) \rightarrow (\neg p \lor \neg q))$ and note that it is equivalent to $p \land q \land (\neg p \lor \neg q)$. Then taking $\Gamma = \{\{p\}, \{q\}, \{\neg p, \neg q\}\}$ one has:

$$\frac{\Gamma \triangleright \{p\}}{\frac{\Gamma \triangleright \{q\}}{\Gamma \triangleright \{\neg p, \neg q\}}}{\frac{\Gamma \triangleright \{\neg p\}}{\Gamma \triangleright \{\neg p\}}}$$

Theorem 18 (Completeness of Propositional Resolution). If Γ is unsatisfiable, then $\Gamma \triangleright \emptyset$ is derivable.

Proof. By Compactness, we may assume that Γ is finite. Hence the number *n* of distinct variables that occur anywhere in Γ is finite. We proceed by induction on *n*. If n = 0, note that Γ cannot be empty, for it would be satisfiable, so $\Gamma = \{\emptyset\} \triangleright \emptyset$ and we are done.

If n > 0, let p be one variable that occurs somewhere in Γ . If a clause $\mathscr{C} \in \Gamma$ contains both p and $\neg p$, then \mathscr{C} is trivially satisfiable (*i.e.* any valuation verifies it) so without loss of generality we may assume that Γ has no such clauses. Now let:

$$\begin{array}{ll} \Delta & \stackrel{\text{def}}{=} & \{\mathsf{R}_p(\mathscr{C},\mathscr{D}) \mid \mathscr{C} \in \Gamma, \ \mathscr{D} \in \Gamma, \ p \in \mathscr{C}, \ \overline{p} \in \mathscr{D} \} \\ & \cup & \{\mathscr{C} \mid \mathscr{C} \in \Gamma, \ x \notin \mathscr{C}, \ \overline{x} \notin \mathscr{C} \} \end{array}$$

To conclude, observe that Δ is satisfiable if and only if Γ is satisfiable, and the variable *p* does not occur in Δ , so by *i.h.* we have that $\Delta \triangleright \emptyset$ as required.