Weak normalization of the simply typed λ -calculus

labandalambda

2021-06-12

Definition 1 (Simply typed λ calculus, à la Church). The set of types is given by:

$$A ::= \alpha \mid A \to A$$

Typing rules are given by:

$$\frac{\vdash t: B}{\vdash x^A: A} \Rightarrow \frac{\vdash t: B}{\vdash \lambda x^A. t: A \to B} \to \mathbb{I} \quad \frac{\vdash t: A \to B \quad \vdash s: A}{\vdash ts: B} \to \mathbb{E}$$

Note that typable terms have unique type. Sometimes we write t^A to emphasize that t is a term of type A.

Definition 2 (Operations with multisets). The letters M, N, \ldots stand for multisets of non-negative integers. We write $M \uplus N$ for the *additive* union of multisets, *e.g.* $\{1, 2, 2\} \uplus \{2, 3, 3\} = \{1, 2, 2, 2, 3, 3\}$. Given a multiset of non-negative integers M and a non-negative integer n, we write M < n if m < n for every $m \in M$. The binary relation $>^1$ between multisets of non-negative integers is defined as follows:

 $M \uplus \{n\} >^1 M \uplus \{m_1, \dots, m_k\}$ holds for every n, k, m_1, \dots, m_k such that $n > m_1, \dots, m_k$

The multiset ordering M > N is defined as the transitive closure of $>^1$.

Theorem 3 (Dershowitz–Manna). The multiset ordering is well-founded.

Definition 4. The *degree* $\delta(A)$ of a type *A* is its height, seen as a tree, that is:

$$\begin{aligned} \delta(\alpha) & \stackrel{\text{def}}{=} & 0\\ \delta(A \to B) & \stackrel{\text{def}}{=} & 1 + \max\{\delta(A), \delta(B)\} \end{aligned}$$

The *measure* #(t) of a term is the multiset of degrees of its redexes, that is:

$$\begin{array}{ll} \#(x^{A}) & \stackrel{\text{def}}{=} & \varnothing \\ \#(\lambda x^{A}, t) & \stackrel{\text{def}}{=} & \#(t) \\ \#(t \, s) & \stackrel{\text{def}}{=} & \#(t) \uplus \#(s) \uplus \begin{cases} \{\delta(A \to B)\} & \text{if } t \text{ is of the form } t = \lambda x^{A}, t^{B} \\ \varnothing & \text{otherwise} \end{cases}$$

Lemma 5. Let $\vdash t$: A and $\vdash s$: B. Suppose that $n \ge 0$ is such that #(t) < n and #(s) < n. Then $\#(t \{x^B := s\}) < \max\{n, 1 + \delta(B)\}$.

Proof. By induction on *t*:

- 1. Variable, $t = x^B$, with A = B: Then $\#(t\{x^B := s\}) = \#(s) < n \le \max\{n, 1 + \delta(B)\}$.
- 2. Variable, $t = y^A \neq x$: Then $\#(t\{x^B := s\}) = \#(y) = \emptyset < n \le \max\{n, 1 + \delta(B)\}.$
- 3. Abstraction, $t = \lambda y^C . u^D$, with $A = (C \to D)$: Note that $\#(u) = \#(\lambda y^C . u) < n$ by hypothesis, so $\#(t\{x^B := s\}) = \#(\lambda y^C . u\{x^B := s\}) = \#(u\{x^B := s\}) < \max\{n, 1 + \delta(B)\}$ by IH.
- 4. Application, $t = t_1^{C \to A} t_2^C$: Note that $\#(t_1) \subseteq \#(t) < n$ and similarly $\#(t_2) \subseteq \#(t) < n$ by hypothesis, so $\#(t_1) < n$ and $\#(t_2) < n$. By IH:

$$\#(t_1\{x^B := s\}) < \max\{n, 1 + \delta(B)\}$$
 and $\#(t_2\{x^B := s\}) < \max\{n, 1 + \delta(B)\}$

We consider two subcases, depending on whether $t_1{x^B := s}$ is an abstraction or not:

4.1 If $t_1 \{x^B := s\}$ is not an abstraction, it is immediate to conclude, given that:

$$\#(t\{x^B := s\}) = \#(t_1\{x^B := s\}) \uplus \#(t_2\{x^B := s\}) < \max\{n, 1 + \delta(B)\}$$

4.2 If $t_1\{x^B := s\}$ is an abstraction, *i.e.* of the form $t_1\{x^B := s\} = \lambda y^C$. p^A : then there are two possibilities, either t_1 is an abstraction, or $t_1 = x$ and s is an abstraction:

4.2.1 If
$$t_1 = \lambda y^C$$
. r^A , then $\{\delta(C \to A)\} \subseteq \#(t_1, t_2) = \#(t) < n$ by hypothesis. Hence:

$$\#(t\{x^B := s\}) = \#(t_1\{x^B := s\}) \uplus \#(t_2\{x^B := s\}) \uplus \{\delta(C \to A)\} < \max\{n, 1 + \delta(B)\}$$

4.2.2 If $t_1 = x$ and $s = \lambda y^C \cdot p^A$, where $B = (C \to A)$, then $\delta(C \to A) = \delta(B) < 1 + \delta(B)$. Hence:

$$\#(t\{x^B := s\}) = \#(t_1\{x^B := s\}) \uplus \#(t_2\{x^B := s\}) \uplus \{\delta(C \to A)\} < \max\{n, 1 + \delta(B)\}$$

Lemma 6. Let t be a typable term, and let $t \to t'$ be a β -step that results from contracting the rightmost redex of maximum degree in t. Then #(t) > #(s).

Proof. By induction on *t*.

- 1. Variable, t = x: Vacuously true.
- 2. Abstraction, $t = \lambda x$. *s*: Immediate by IH.
- 3. Application, $t = t_1 t_2$. We consider three subcases, depending on whether the step $t \to t'$ is at the root, internal to t_1 , or internal to t_2 :
 - 3.1 Reduction at the root: then $t_1 = \lambda x^A$. s^B and the step is of the form:

$$t = (\lambda x^A \cdot s) t_2 \rightarrow s \{ x^A := t_2 \} = t'$$

Note that:

$$#(t) = #(s) \uplus #(t_2) \uplus \{\delta(A \to B)\}$$

Note that the degree of the contracted redex is $\delta(A \to B)$ and, since it is the rightmost redex of maximum degree, $\#(s) < \delta(A \to B)$ and $\#(t_2) < \delta(A \to B)$. Hence by Lem. 5

$$#(t') = #(s\{x^A := t_2\}) < \max\{\delta(A \to B), 1 + \delta(A)\} = \delta(A \to B)$$

Therefore #(t) > #(t').

3.2 Reduction internal to t_1 : then the step is of the form:

$$t = t_1 t_2 \rightarrow t'_1 t_2 = t'$$

where $t_1 \rightarrow t'_1$ again results from contracting the rightmost redex of maximum degree in t_1 . By IH we have that $\#(t_1) > \#(t'_1)$. We consider two subcases, depending on whether t_1 is an abstraction or not:

3.2.1 If t_1 is an abstraction, *i.e.* $t_1 = \lambda x^A$. p^B . Then t'_1 is also an abstraction and, by subject reduction, it must be of the form $t'_1 = \lambda x^A$. q^B . Hence:

$$\#(t) = \#(t_1) \cup \#(t_2) \cup \{\delta(A \to B)\} \succ \#(t_1') \cup \#(t_2) \cup \{\delta(A \to B)\} = \#(t')$$

- 3.2.2 If t_1 is not an abstraction, we consider two further subcases, depending on whether t'_1 is an abstraction or not:
 - 3.2.2.1 If t'_1 is an abstraction, *i.e.* $t'_1 = \lambda x^A \cdot q^B$, then note that, since t_1 is not an abstraction, it must be an application, and the step $t_1 \rightarrow t'_1$ must contract a redex at the root. This means that t_1 is of the form $t_1 = (\lambda y^C \cdot p^{A \rightarrow B})r$, with $t'_1 = p\{y^C := r\} = \lambda x^A \cdot q^B$. Hence there are two possibilities, either p is an abstraction or $p = y^C$ and r is an abstraction.

• If *p* is an abstraction, then $p = \lambda z^A$. q'^B , so the step $t \to t'$ is of the form:

$$\lambda y^{\mathcal{C}} \cdot \lambda z^{\mathcal{A}} \cdot q') r t_2 \to (\lambda z^{\mathcal{A}} \cdot q' \{ y^{\mathcal{C}} := r \}) t_2$$

Note that the degree of the contracted redex is $\delta(C \to (A \to B))$ and, since it is the rightmost redex of maximum degree, $\#(q') < \delta(C \to (A \to B))$ and $\#(r) < \delta(C \to (A \to B))$. Hence by Lem. 5

$$#(q'\{y^C := r\}) < \max\{\delta(C \to (A \to B)), 1 + \delta(C)\} = \delta(C \to (A \to B))$$

Therefore:

$$\begin{split} \#(t) &= \ \#(q') \uplus \#(r) \uplus \#(t_2) \uplus \left\{ \delta(C \to (A \to B)) \right\} \\ & \succ \ \#(q'\{y^C := r\}) \uplus \#(t_2) \uplus \left\{ \delta(A \to B) \right\} \\ & = \ \#(t') \end{split}$$

• If $p = y^C$ and $r = \lambda x^A$. q^B then $C = (A \to B)$ and the step $t \to t'$ is of the form:

$$t = (\lambda y^{A \to B}, y^{A \to B}) (\lambda x^A, q^B) t_2 \to (\lambda x^A, q^B) t_2 = t'$$

Then:

$$\#(t) = \#(q^B) \uplus \#(t_2) \uplus \{ \delta((A \to B) \to A \to B) \} \succ \#(q^B) \uplus \#(t_2) \uplus \{ \delta(A \to B) \} = \#(t')$$

3.2.2.2 If t'_1 is not an abstraction, then it is immediate to conclude, as:

$$\#(t) = \#(t_1) \cup \#(t_2) \succ \#(t_1') \cup \#(t_2) = \#(t')$$

3.3 Reduction internal to t_2 : then the step is of the form:

$$t = t_1 t_2 \rightarrow t_1 t_2' = t'$$

where $t_2 \rightarrow t'_2$ again results from contracting the rightmost redex of maximum degree in t_2 . By IH we have that $\#(t_2) > \#(t'_2)$. From this we conclude that $\#(t_1 t_2) > \#(t_1 t'_2)$, as required.

Theorem 7. The simply typed λ -calculus is weakly normalizing.

Proof. An easy corollary of Thm. 3 and Lem. 6.