Weak normalization of the simply typed λ-calculus

labandalambda
2021-06-12

Definition 1 (Simply typed λ calculus, à la Church). The set of types is given by:

$$
A::=\alpha \mid A \rightarrow A
$$

Typing rules are given by:

$$
\frac{\vdash}{\vdash x^{A}: A} \text { ax } \frac{\vdash t: B}{\vdash \lambda x^{A} . t: A \rightarrow B} \rightarrow \mathrm{I} \quad \frac{\vdash t: A \rightarrow B \quad \vdash s: A}{\vdash t s: B} \rightarrow \mathrm{E}
$$

Note that typable terms have unique type. Sometimes we write t^{A} to emphasize that t is a term of type A.
Definition 2 (Operations with multisets). The letters M, N, \ldots stand for multisets of non-negative integers. We write $M \uplus N$ for the additive union of multisets, e.g. $\{1,2,2\} \uplus\{2,3,3\}=\{1,2,2,2,3,3\}$. Given a multiset of non-negative integers M and a non-negative integer n, we write $M<n$ if $m<n$ for every $m \in M$. The binary relation $>^{1}$ between multisets of non-negative integers is defined as follows:

$$
M \uplus\{n\} \succ^{1} M \uplus\left\{m_{1}, \ldots, m_{k}\right\} \quad \text { holds for every } n, k, m_{1}, \ldots, m_{k} \text { such that } n>m_{1}, \ldots, m_{k}
$$

The multiset ordering $M>N$ is defined as the transitive closure of $>^{1}$.
Theorem 3 (Dershowitz-Manna). The multiset ordering is well-founded.
Definition 4. The degree $\delta(A)$ of a type A is its height, seen as a tree, that is:

$$
\begin{aligned}
& \delta(\alpha) \stackrel{\text { def }}{=} \\
& \delta(A \rightarrow B) \stackrel{\text { def }}{=} \\
& 1+\max \{\delta(A), \delta(B)\}
\end{aligned}
$$

The measure \# (t) of a term is the multiset of degrees of its redexes, that is:

$$
\begin{array}{rll}
\#\left(x^{A}\right) & \stackrel{\text { def }}{=} \varnothing \\
\#\left(\lambda x^{A} \cdot t\right) & \stackrel{\text { def }}{=} \#(t) \\
\#(t s) & \stackrel{\text { def }}{=} \#(t) \uplus \#(s) \uplus \begin{cases}\{\delta(A \rightarrow B)\} & \text { if } t \text { is of the form } t=\lambda x^{A} \cdot t^{B} \\
\varnothing & \text { otherwise }\end{cases}
\end{array}
$$

Lemma 5. Let $\vdash t: A$ and $\vdash s: B$. Suppose that $n \geq 0$ is such that $\#(t)<n$ and $\#(s)<n$. Then $\#\left(t\left\{x^{B}:=\right.\right.$ $s\})<\max \{n, 1+\delta(B)\}$.

Proof. By induction on t :

1. Variable, $t=x^{B}$, with $A=B$: Then $\#\left(t\left\{x^{B}:=s\right\}\right)=\#(s)<n \leq \max \{n, 1+\delta(B)\}$.
2. Variable, $t=y^{A} \neq x$: Then $\#\left(t\left\{x^{B}:=s\right\}\right)=\#(y)=\varnothing<n \leq \max \{n, 1+\delta(B)\}$.
3. Abstraction, $t=\lambda y^{C}$. u^{D}, with $A=(C \rightarrow D)$: Note that $\#(u)=\#\left(\lambda y^{C} . u\right)<n$ by hypothesis, so $\#\left(t\left\{x^{B}:=s\right\}\right)=\#\left(\lambda y^{C} \cdot u\left\{x^{B}:=s\right\}\right)=\#\left(u\left\{x^{B}:=s\right\}\right)<\max \{n, 1+\delta(B)\}$ by IH.
4. Application, $t=t_{1}^{C \rightarrow A} t_{2}^{C}$: Note that $\#\left(t_{1}\right) \subseteq \#(t)<n$ and similarly $\#\left(t_{2}\right) \subseteq \#(t)<n$ by hypothesis, so $\#\left(t_{1}\right)<n$ and $\#\left(t_{2}\right)<n$. By IH:

$$
\#\left(t_{1}\left\{x^{B}:=s\right\}\right)<\max \{n, 1+\delta(B)\} \quad \text { and } \quad \#\left(t_{2}\left\{x^{B}:=s\right\}\right)<\max \{n, 1+\delta(B)\}
$$

We consider two subcases, depending on whether $t_{1}\left\{x^{B}:=s\right\}$ is an abstraction or not:
4.1 If $t_{1}\left\{x^{B}:=s\right\}$ is not an abstraction, it is immediate to conclude, given that:

$$
\#\left(t\left\{x^{B}:=s\right\}\right)=\#\left(t_{1}\left\{x^{B}:=s\right\}\right) \uplus \#\left(t_{2}\left\{x^{B}:=s\right\}\right)<\max \{n, 1+\delta(B)\}
$$

4.2 If $t_{1}\left\{x^{B}:=s\right\}$ is an abstraction, i.e. of the form $t_{1}\left\{x^{B}:=s\right\}=\lambda y^{C} . p^{A}$: then there are two possibilities, either t_{1} is an abstraction, or $t_{1}=x$ and s is an abstraction:
4.2.1 If $t_{1}=\lambda y^{C} . r^{A}$, then $\{\delta(C \rightarrow A)\} \subseteq \#\left(t_{1} t_{2}\right)=\#(t)<n$ by hypothesis. Hence:

$$
\#\left(t\left\{x^{B}:=s\right\}\right)=\#\left(t_{1}\left\{x^{B}:=s\right\}\right) \uplus \#\left(t_{2}\left\{x^{B}:=s\right\}\right) \uplus\{\delta(C \rightarrow A)\}<\max \{n, 1+\delta(B)\}
$$

4.2.2 If $t_{1}=x$ and $s=\lambda y^{C}$. p^{A}, where $B=(C \rightarrow A)$, then $\delta(C \rightarrow A)=\delta(B)<1+\delta(B)$. Hence:

$$
\#\left(t\left\{x^{B}:=s\right\}\right)=\#\left(t_{1}\left\{x^{B}:=s\right\}\right) \uplus \#\left(t_{2}\left\{x^{B}:=s\right\}\right) \uplus\{\delta(C \rightarrow A)\}<\max \{n, 1+\delta(B)\}
$$

Lemma 6. Let t be a typable term, and let $t \rightarrow t^{\prime}$ be a β-step that results from contracting the rightmost redex of maximum degree in t. Then $\#(t)>\#(s)$.

Proof. By induction on t.

1. Variable, $t=x$: Vacuously true.
2. Abstraction, $t=\lambda x$. s : Immediate by IH.
3. Application, $t=t_{1} t_{2}$. We consider three subcases, depending on whether the step $t \rightarrow t^{\prime}$ is at the root, internal to t_{1}, or internal to t_{2} :
3.1 Reduction at the root: then $t_{1}=\lambda x^{A} . s^{B}$ and the step is of the form:

$$
t=\left(\lambda x^{A} . s\right) t_{2} \rightarrow s\left\{x^{A}:=t_{2}\right\}=t^{\prime}
$$

Note that:

$$
\#(t)=\#(s) \uplus \#\left(t_{2}\right) \uplus\{\delta(A \rightarrow B)\}
$$

Note that the degree of the contracted redex is $\delta(A \rightarrow B)$ and, since it is the rightmost redex of maximum degree, $\#(s)<\delta(A \rightarrow B)$ and $\#\left(t_{2}\right)<\delta(A \rightarrow B)$. Hence by Lem. 5

$$
\#\left(t^{\prime}\right)=\#\left(s\left\{x^{A}:=t_{2}\right\}\right)<\max \{\delta(A \rightarrow B), 1+\delta(A)\}=\delta(A \rightarrow B)
$$

Therefore \# $(t)>\#\left(t^{\prime}\right)$.
3.2 Reduction internal to t_{1} : then the step is of the form:

$$
t=t_{1} t_{2} \rightarrow t_{1}^{\prime} t_{2}=t^{\prime}
$$

where $t_{1} \rightarrow t_{1}^{\prime}$ again results from contracting the rightmost redex of maximum degree in t_{1}. By IH we have that $\#\left(t_{1}\right) \succ \#\left(t_{1}^{\prime}\right)$. We consider two subcases, depending on whether t_{1} is an abstraction or not:
3.2.1 If t_{1} is an abstraction, i.e. $t_{1}=\lambda x^{A}$. p^{B}. Then t_{1}^{\prime} is also an abstraction and, by subject reduction, it must be of the form $t_{1}^{\prime}=\lambda x^{A} \cdot q^{B}$. Hence:

$$
\#(t)=\#\left(t_{1}\right) \cup \#\left(t_{2}\right) \cup\{\delta(A \rightarrow B)\}>\#\left(t_{1}^{\prime}\right) \cup \#\left(t_{2}\right) \cup\{\delta(A \rightarrow B)\}=\#\left(t^{\prime}\right)
$$

3.2.2 If t_{1} is not an abstraction, we consider two further subcases, depending on whether t_{1}^{\prime} is an abstraction or not:
3.2.2.1 If t_{1}^{\prime} is an abstraction, i.e. $t_{1}^{\prime}=\lambda x^{A} . q^{B}$, then note that, since t_{1} is not an abstraction, it must be an application, and the step $t_{1} \rightarrow t_{1}^{\prime}$ must contract a redex at the root. This means that t_{1} is of the form $t_{1}=\left(\lambda y^{C} \cdot p^{A \rightarrow B}\right) r$, with $t_{1}^{\prime}=p\left\{y^{C}:=r\right\}=\lambda x^{A} \cdot q^{B}$. Hence there are two possibilities, either p is an abstraction or $p=y^{C}$ and r is an abstraction.

- If p is an abstraction, then $p=\lambda z^{A} \cdot q^{\prime B}$, so the step $t \rightarrow t^{\prime}$ is of the form:

$$
\left(\lambda y^{C} \cdot \lambda z^{A} \cdot q^{\prime}\right) r t_{2} \rightarrow\left(\lambda z^{A} \cdot q^{\prime}\left\{y^{C}:=r\right\}\right) t_{2}
$$

Note that the degree of the contracted redex is $\delta(C \rightarrow(A \rightarrow B))$ and, since it is the rightmost redex of maximum degree, $\#\left(q^{\prime}\right)<\delta(C \rightarrow(A \rightarrow B)$) and $\#(r)<\delta(C \rightarrow$ $(A \rightarrow B)$). Hence by Lem. 5

$$
\#\left(q^{\prime}\left\{y^{C}:=r\right\}\right)<\max \{\delta(C \rightarrow(A \rightarrow B)), 1+\delta(C)\}=\delta(C \rightarrow(A \rightarrow B))
$$

Therefore:

$$
\begin{aligned}
\#(t) & =\#\left(q^{\prime}\right) \uplus \#(r) \uplus \#\left(t_{2}\right) \uplus\{\delta(C \rightarrow(A \rightarrow B))\} \\
& \succ \#\left(q^{\prime}\left\{y^{C}:=r\right\}\right) \uplus \#\left(t_{2}\right) \uplus\{\delta(A \rightarrow B)\} \\
& =\#\left(t^{\prime}\right)
\end{aligned}
$$

- If $p=y^{C}$ and $r=\lambda x^{A} \cdot q^{B}$ then $C=(A \rightarrow B)$ and the step $t \rightarrow t^{\prime}$ is of the form:

$$
t=\left(\lambda y^{A \rightarrow B} \cdot y^{A \rightarrow B}\right)\left(\lambda x^{A} \cdot q^{B}\right) t_{2} \rightarrow\left(\lambda x^{A} \cdot q^{B}\right) t_{2}=t^{\prime}
$$

Then:

$$
\#(t)=\#\left(q^{B}\right) \uplus \#\left(t_{2}\right) \uplus\{\delta((A \rightarrow B) \rightarrow A \rightarrow B)\}>\#\left(q^{B}\right) \uplus \#\left(t_{2}\right) \uplus\{\delta(A \rightarrow B)\}=\#\left(t^{\prime}\right)
$$

3.2.2.2 If t_{1}^{\prime} is not an abstraction, then it is immediate to conclude, as:

$$
\#(t)=\#\left(t_{1}\right) \cup \#\left(t_{2}\right)>\#\left(t_{1}^{\prime}\right) \cup \#\left(t_{2}\right)=\#\left(t^{\prime}\right)
$$

3.3 Reduction internal to t_{2} : then the step is of the form:

$$
t=t_{1} t_{2} \rightarrow t_{1} t_{2}^{\prime}=t^{\prime}
$$

where $t_{2} \rightarrow t_{2}^{\prime}$ again results from contracting the rightmost redex of maximum degree in t_{2}. By IH we have that $\#\left(t_{2}\right)>\#\left(t_{2}^{\prime}\right)$. From this we conclude that $\#\left(t_{1} t_{2}\right)>\#\left(t_{1} t_{2}^{\prime}\right)$, as required.

Theorem 7. The simply typed λ-calculus is weakly normalizing.
Proof. An easy corollary of Thm. 3 and Lem. 6.

