
Weak normalization of the simply typed �-calculus

labandalambda

2021-06-12

Definition 1 (Simply typed � calculus, à la Church). �e set of types is given by:

A ∶∶= � ∣ A→ A

Typing rules are given by:

ax
⊢ xA ∶ A

⊢ t ∶ B
→I

⊢ �xA. t ∶ A→ B

⊢ t ∶ A → B ⊢ s ∶ A
→E

⊢ t s ∶ B

Note that typable terms have unique type. Sometimes we write tA to emphasize that t is a term of typeA.

Definition2 (Operationswithmultisets). �elettersM,N,… stand formultisets of non-negative integers.
We writeM ⊎ N for the additive union of multisets, e.g. {1, 2, 2} ⊎ {2, 3, 3} = {1, 2, 2, 2, 3, 3}. Given a
multiset of non-negative integersM and a non-negative integer n, we writeM < n if m < n for every
m ∈M. �e binary relation≻1 betweenmultisets of non-negative integers is defined as follows:

M ⊎ {n} ≻1 M ⊎ {m1,… , mk} holds for every n, k, m1,… , mk such that n ≻ m1,… , mk

�emultiset orderingM ≻ N is defined as the transitive closure of≻1.

�eorem 3 (Dershowitz–Manna). �emultiset ordering is well-founded.

Definition 4. �e degree �(A) of a typeA is its height, seen as a tree, that is:

�(�) ≝ 0
�(A → B) ≝ 1 + max{�(A), �(B)}

�emeasure #(t) of a term is the multiset of degrees of its redexes, that is:

#(xA) ≝ ∅
#(�xA. t) ≝ #(t)

#(t s) ≝ #(t) ⊎ #(s) ⊎

{

{�(A → B)} if t is of the form t = �xA. tB

∅ otherwise

Lemma 5. Let⊢ t ∶ A and⊢ s ∶ B. Suppose that n ≥ 0 is such that #(t) < n and #(s) < n. �en #(t{xB ∶=
s}) < max{n, 1 + �(B)}.

Proof. By induction on t:

1. Variable, t = xB, withA = B: �en #(t{xB ∶= s}) = #(s) < n ≤ max{n, 1 + �(B)}.

2. Variable, t = yA ≠ x: �en #(t{xB ∶= s}) = #(y) = ∅ < n ≤ max{n, 1 + �(B)}.

3. Abstraction, t = �yC . uD, with A = (C → D): Note that #(u) = #(�yC . u) < n by hypothesis, so
#(t{xB ∶= s}) = #(�yC . u{xB ∶= s}) = #(u{xB ∶= s}) < max{n, 1 + �(B)} by IH.

4. Application, t = tC→A1 tC2 : Note that #(t1) ⊆ #(t) < n and similarly #(t2) ⊆ #(t) < n by hypothesis, so
#(t1) < n and #(t2) < n. By IH:

#(t1{xB ∶= s}) < max{n, 1 + �(B)} and #(t2{xB ∶= s}) < max{n, 1 + �(B)}

We consider two subcases, depending on whether t1{xB ∶= s} is an abstraction or not:

1



4.1 If t1{xB ∶= s} is not an abstraction, it is immediate to conclude, given that:

#(t{xB ∶= s}) = #(t1{xB ∶= s}) ⊎ #(t2{xB ∶= s}) < max{n, 1 + �(B)}

4.2 If t1{xB ∶= s} is an abstraction, i.e. of the form t1{xB ∶= s} = �yC . pA: then there are two
possibilities, either t1 is an abstraction, or t1 = x and s is an abstraction:
4.2.1 If t1 = �yC . rA, then {�(C → A)} ⊆ #(t1 t2) = #(t) < n by hypothesis. Hence:

#(t{xB ∶= s}) = #(t1{xB ∶= s}) ⊎ #(t2{xB ∶= s}) ⊎ {�(C → A)} < max{n, 1 + �(B)}

4.2.2 If t1 = x and s = �yC . pA, where B = (C → A), then �(C → A) = �(B) < 1 + �(B).
Hence:

#(t{xB ∶= s}) = #(t1{xB ∶= s}) ⊎ #(t2{xB ∶= s}) ⊎ {�(C → A)} < max{n, 1 + �(B)}

Lemma 6. Let t be a typable term, and let t → t′ be a �-step that results from contracting the rightmost redex of maxi-
mum degree in t. �en #(t) > #(s).

Proof. By induction on t.

1. Variable, t = x: Vacuously true.

2. Abstraction, t = �x. s: Immediate by IH.

3. Application, t = t1 t2. We consider three subcases, depending on whether the step t → t′ is at the
root, internal to t1, or internal to t2:

3.1 Reduction at the root: then t1 = �xA. sB and the step is of the form:

t = (�xA. s) t2 → s{xA ∶= t2} = t′

Note that:
#(t) = #(s) ⊎ #(t2) ⊎ {�(A→ B)}

Note that the degree of the contracted redex is �(A → B) and, since it is the rightmost redex of
maximum degree, #(s) < �(A→ B) and #(t2) < �(A → B). Hence by Lem. 5

#(t′) = #(s{xA ∶= t2}) < max{�(A→ B), 1 + �(A)} = �(A→ B)

�erefore #(t) ≻ #(t′).
3.2 Reduction internal to t1: then the step is of the form:

t = t1 t2 → t′1 t2 = t′

where t1 → t′1 again results from contracting the rightmost redex of maximum degree in t1.
By IH we have that #(t1) ≻ #(t′1). We consider two subcases, depending on whether t1 is an
abstraction or not:
3.2.1 If t1 is an abstraction, i.e. t1 = �xA. pB. �en t′1 is also an abstraction and, by subject

reduction, it must be of the form t′1 = �xA. qB. Hence:

#(t) = #(t1) ∪ #(t2) ∪ {�(A→ B)} ≻ #(t′1) ∪ #(t2) ∪ {�(A → B)} = #(t′)

3.2.2 If t1 is not an abstraction, we consider two further subcases, depending onwhether t′1 is an
abstraction or not:

3.2.2.1 If t′1 is an abstraction, i.e. t
′
1 = �xA. qB, then note that, since t1 is not an abstraction,

it must be an application, and the step t1 → t′1 must contract a redex at the root. �is
means that t1 is of the form t1 = (�yC . pA→B) r, with t′1 = p{yC ∶= r} = �xA. qB.
Hence there are two possibilities, either p is an abstraction or p = yC and r is an ab-
straction.

2



• If p is an abstraction, then p = �zA. q′B, so the step t → t′ is of the form:

(�yC . �zA. q′) r t2 → (�zA. q′{yC ∶= r}) t2

Note that the degree of the contracted redex is �(C → (A → B)) and, since it is the
rightmost redex of maximum degree, #(q′) < �(C → (A → B)) and #(r) < �(C →
(A → B)). Hence by Lem. 5

#(q′{yC ∶= r}) < max{�(C → (A→ B)), 1 + �(C)} = �(C → (A→ B))

�erefore:

#(t) = #(q′) ⊎ #(r) ⊎ #(t2) ⊎ {�(C → (A → B))}
≻ #(q′{yC ∶= r}) ⊎ #(t2) ⊎ {�(A→ B)}
= #(t′)

• If p = yC and r = �xA. qB thenC = (A → B) and the step t → t′ is of the form:

t = (�yA→B . yA→B) (�xA. qB) t2 → (�xA. qB) t2 = t′

�en:

#(t) = #(qB)⊎#(t2)⊎{�((A → B) → A → B)} ≻ #(qB)⊎#(t2)⊎{�(A→ B)} = #(t′)

3.2.2.2 If t′1 is not an abstraction, then it is immediate to conclude, as:

#(t) = #(t1) ∪ #(t2) ≻ #(t′1) ∪ #(t2) = #(t′)

3.3 Reduction internal to t2: then the step is of the form:

t = t1 t2 → t1 t
′
2 = t′

where t2 → t′2 again results from contracting the rightmost redex of maximum degree in t2. By
IH we have that #(t2) ≻ #(t′2). From this we conclude that #(t1 t2) ≻ #(t1 t′2), as required.

�eorem 7. �e simply typed �-calculus is weakly normalizing.

Proof. An easy corollary of�m. 3 and Lem. 6.

3


